Bioactive Peptides from Velvet Bean Tempe: Neutrase-Catalyzed Production in Membrane Reactor

Azis Boing Sitanggang, Tsaniyah Ayu Mauliasyam, Nadine Kurniadi, Slamet Budijanto, Ho-Shing Wu


Velvet beans are potential sources of parent proteins for bioactive peptide production. In this study, a combination of fermentation and neutrase-catalyzed continuous hydrolysis in an enzymatic membrane reactor was performed to produce antioxidative and angiotensin I-converting enzyme inhibitory (ACEi) peptides. The optimum operating conditions were τ = 6 h and [E]/[S] = 7.5%. The resulting permeate, which was a<10-kDa fraction, exhibited antioxidant activity at 0.38 mg ascorbic acid equivalent antioxidant capacity (AEAC)/mL (2,2-diphenyl-1-picrylhydrazyl, DPPH inhibition) and 0.26 mg AEAC/mL (ferric reducing antioxidant power, FRAP), and ACEi activity of 81.02%. Further fractionation of the permeate increased the ACEi activity in which 2-kDa fraction showed the most potent activity (IC50 = 0.23 µg protein/mL). The IC50 value of the outcome was comparable to those reported in the literature for velvet bean-based peptides. Furthermore, this study suggests that neutrase is a good catalyst candidate for the synthesis of bioactive peptides from velvet beans.


Aluko RE. 2015a. Structure and function of plant protein-derived antihypertensive peptides. Curr Opin Food Sci 4: 44–50.

Aluko RE. 2015b. Amino Acids, Peptides, and Proteins as Antioxidants for Food Preservation. In: Handbook of Antioxidants for Food Preservation. 105–140. Woodhead Publishing, Sawston, United Kingdom.

[AOAC] Association of Official Analytical Chemists. 2012. Official Methods of Analysis of AOAC international, 19th Edition. Washington, D.C. (US): AOAC International.

Chel-Guerrero L, Galicia-Martínez S, Acevedo-Fernández JJ, Santaolalla-Tapia J, Betancur-Ancona D. 2017. Evaluation of hypotensive and antihypertensive effects of velvet bean (Mucuna pruriens L.) hydrolysates. J Med Food 20: 37–45.

Cupp-Enyard C, Aldrich S. 2008. Sigma’s non-specific protease activity assay - Casein as a substrate. J Vis Exp 19: 899–910.

Daliri EBM, Lee BH, Oh DH. 2018. Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr 58: 2273–2284.

Damrongsakkul S, Ratanathammapan K, Komolpis K, Tanthapanichakoon W. 2008. Enzymatic hydrolysis of rawhide using papain and neutrase. J Ind Eng Chem 14: 202–206.
Daroit DJ, Brandelli A. 2021. In vivo bioactivities of food protein-derived peptides–A current review. Curr Opin Food Sci 39: 120–129.

de La Torre T, Harff M, Lesjean B, Drews A, Kraume M. 2009. Characterisation of polysaccharide fouling of an ultrafiltration membrane using model solutions. Desalin Water Treat 8: 17–23.

Durand E, Beaubier S, Ilic I, Fine F, Kapel R, Villeneuve P. 2021. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 4: 365–397.

Guéguen J, Walrand S, Bourgeois O. 2016. Les protéines végétales: contexte et potentiels en alimentation humaine. Cah Nutr Diet 51: 177–185.

He R, Ma H, Zhao W, Qu W, Zhao J, Luo L, Zhu W. 2012. Modeling the QSAR of ACE-inhibitory peptides with ANN and its applied illustration. Int J Pept 2012: 620609.

Herrera Chalé FG, Ruiz Ruiz JC, Acevedo Fernández JJ, Betancur Ancona DA, Segura Campos MR. 2014. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochem 49: 1691–1698.

Indrati R. 2021. Bioactive Peptides from Legumes and Their Bioavailability. In: Legumes - Volume 2. IntechOpen, London, United Kingdom.

Kalidass C, Mahapatra AK. 2014. Evaluation of the proximate and phytochemical compositions of an underexploited legume Mucuna pruriens var. utilis (Wall ex Wight) L.H.Bailey. Int Food Res J 21: 303–308.

Koyuncu I, Sengur R, Turken T, Guclu S, Pasaoglu ME. 2015. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In: Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications. 83–128. Woodhead Publishing, Sawston, United Kingdom.

Kurniadi N, Yasni S, Budijanto S, Sitanggang AB. 2023. Continuous production of velvet bean-based bioactive peptides in membrane reactor with dual enzyme system. Food Chem 423: 136378.

Peredo-Lovillo A, Hernández-Mendoza A, Vallejo-Cordoba B, Romero-Luna HE. 2022. Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 13: 100183.

Pratami T, Sitanggang AB, Wijaya CH. 2022. Produksi hidrolisat protein kacang koro benguk dengan aktivitas penghambat kerja enzim pengkonversi angiotensin melalui kombinasi fermentasi dan hidrolisis enzimatik. J Teknol Industri Pangan 33: 157–168.

Rizkaprilisa W, Marsono Y, Indrati R. 2020. Bioactive peptide tempe made from Mucuna Pruriencs (L.) DC as an inhibitor of angiotensin-i-converting enzyme (ACE) in a digestion simulation. Prev Nutr Food Sci 25: 93–97.

Sánchez A, Vázquez A. 2017. Bioactive peptides: A review. Food Qual Saf 1: 29–46.

Segura-Campos MR, Espadas-Alcocer CP, Chel-Guerrero L, Betancur-Ancona D. 2013. ACE-I inhibitory peptide fractions from enzymatic hydrolysates of velvet bean (Mucuna pruriens). Agric Sci 4: 767–773.

Segura-Campos MR, Tovar-Benítez T, Chel-Guerrero L, Betancur-Ancona D. 2014. Functional and bioactive properties of velvet bean (Mucuna pruriens) protein hydrolysates produced by enzymatic treatments. J Food Meas Charact 8: 61–69. s11694-013-9165-0

Sitanggang AB, Dewi VV, Fadhilatunnur H, Kurniadi N. 2023. Experimental study on the continuous production of velvet bean-based bioactive pep-tides in a membrane reactor and bioactivity mapping. Innov Food Sci Emerg Technol 86: 103380.

Sitanggang AB, Drews A, Kraume M. 2016. Development of a continuous membrane reactor process for enzyme-catalyzed lactulose synthesis. Biochem Eng J 109: 65–80.

Sitanggang AB, Drews A, Kraume M. 2022. Enzyma-tic membrane reactors: Designs, applications, limitations and outlook. Chem Eng Process- Process Intensif 180: 108729.

Sitanggang AB, Putri JE, Palupi NS, Hatzakis E, Syamsir E, Budijanto S. 2021a. Enzymatic preparation of bioactive peptides exhibiting ACE inhibitory activity from soybean and velvet bean: A systematic review. Molecules 26: 3822.

Sitanggang AB, Sumitra J, Budijanto S. 2021b. Continuous production of tempe-based bioactive peptides using an automated enzymatic membrane reactor. Innov Food Sci Emerg Technol 68: 102639.

Tuz MAO, Campos MRS. 2017. Purification of Mucuna pruriens (L) peptide fractions and evaluation of their ACE inhibitory effect. Biocatal Agric Biotechnol 10: 390–395.

Yao GL, He W, Wu YG, Chen J, Hu XW, Yu J. 2019. Purification of angiotensin-I-converting enzyme inhibitory peptides derived from Camellia oleifera abel seed meal hydrolysate. J Food Qual 2019: 7364213.


Azis Boing Sitanggang (Primary Contact)
Tsaniyah Ayu Mauliasyam
Nadine Kurniadi
Slamet Budijanto
Ho-Shing Wu
SitanggangA. B., MauliasyamT. A., KurniadiN., BudijantoS., & Wu H.-S. (2023). Bioactive Peptides from Velvet Bean Tempe: Neutrase-Catalyzed Production in Membrane Reactor. Jurnal Teknologi Dan Industri Pangan, 34(2), 200-209.
Copyright and license info is not available

Article Details