Analysis of the Pollution Load Capacity of Batang Merao Watershed in Jambi Province Analysis of the Pollution Load Capacity of Batang Merao Watershed in Jambi Province

Syiskhaeka Patri, I Putu Santikayasa, Suria Darma Tarigan

Abstract

The Batang Merao Watershed, has been experiencing a decline in water quality due to human activities involving waste utilization and disposal. Therefore, an analysis is necessary to determine the Total Maximum Daily Loads (TMDLs). This study aims to calculate the TMDL of the Batang Merao Watershed and the current as well as the five-year future pollution load capacity using the QUAL2Kw water quality model based on the regulations outlined in the Minister of Environment and Forestry's Regulation No. 01 of 2010. The calibration results of the model using the Nash Sutcliffe Efficiency (NSE) for TSS, BOD5, and COD parameters were 0.766, 0.574, and 0.633, respectively, indicating that water quality modeling can be used to predict river pollution loads. The modeling results indicate that the Total Maximum Daily Loads (TMDLs)  for the Batang Merao Watershed are 95,057 kg day-1 for TSS parameters, 5,739 kg day-1 for BOD5 parameters, and 46,774 kg day-1 for COD parameter. Meanwhile, the current pollution loads are 147,962 kg day-1 for TSS, 10,086 kg day-1 for BOD5, and 60,369 kg day-1 for COD. In the estimated condition, in the year 2028, the pollution loads will amount to 163,023 kg day-1 for TSS parameters, 11,432 kg day-1 for BOD5 parameter, and 69,211 kg day-1 for COD parameter.

References

[1] Ningsih SR, Putra EGE, Goembira F. Analisis Ketersediaan , Kebutuhan dan Kualitas Air pada DAS Batang Merao. Jurnal Ilmu Lingkungan. 2020;18(3):545–555. doi:10.14710/jil.18.3.545-555
[2] Mulyawan R, Wahjunie ED, Ichwandi I, Tarigan SD. Kajian Peran Stakeholder Pada Implementasi Kebijakan Pengelolaan DAS Terpadu, Studi Kasus DAS Krueng Aceh. Jurnal Ilmu Lingkungan. 2022;20(2):198–209. doi:DOI: 10.14710/jil.20.2.198-209
[3] Wandira NA, Deliana A, Junedi H. Kualitas Sub DAS Siulak dan Batang Merao Daerah Mukai Tinggi dan sekitarnya, Kecamatan Siulak Mukai, Kabupaten Kerinci, Provinsi Jambi. In: Seminar Teknologi Kebumian dan Kelautan (SEMITAN II) Institut Teknologi Adhi Tama Surabaya (ITATS), Indonesia, 12 Juli 2020. Surabaya; 2020. p. 507–515
[4] Budiman A. Pemodelan Kualitas Air Dengan Parameter Bod Dan Do Pada Sungai Ciliwung. Indonesian Journal of Urban and Environmental Technology. 2016;5(3):97. doi:10.25105/urbanenvirotech.v5i3.679
[5] Dyah Novitasari Lestari A, Sugiharto E, Siswanta D, Kimia J, Mipa F, Negeri Papua U, Kimia J, Gadjah Mada U. Aplication of Qual2Kw Model to Determine the Strnte&l in Solving Gaiahwong River Water Pollution Caased by Organic Mutter. Jurnal Manusia dan Lingkungan. 2013;20(3):284–293.
[6] Saily R, Setiawan B. Determination of carrying and load capacity using QUAL2Kw modeling simulation. In: IOP Conference Series: Earth and Environmental Science. Vol. 737. Institute of Physics; 2021. doi:10.1088/1755-1315/737/1/012022
[7] Ombaki R, Kerongo J. Formulated Mathematical Model for Delayed Particle Flow in Cascaded Subsurface Water Reservoirs with Validation on River Flow. Journal of Applied Mathematics. 2022;2022. doi:10.1155/2022/3438200
[8] Pangestu R, Riani E, Effendi H. Estimasi Beban Pencemaran Point Source Dan Limbah Domestik Di Sungai Kalibaru Timur Provinsi Dki Jakarta, Indonesia. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). 2017;7(3):219–226. doi:10.29244/jpsl.7.3.219-226
[9] Betti SH, Nurhayati E. Water Modelling of Karang Mumus River Using QUAL2Kw Application. In: IOP Conference Series: Earth and Environmental Science. Vol. 1095. Institute of Physics; 2022. doi:10.1088/1755-1315/1095/1/012036
[10] Ciawi Y, Padilla PMD, Yekti MI. The Strategy of Tukad Badung Pollution Control Using QUAL2Kw and AHP. In: IOP Conference Series: Earth and Environmental Science. Vol. 1117. Institute of Physics; 2022. doi:10.1088/1755-1315/1117/1/012071
[11] Khonok A, Tabrizi MS, Babazadeh H, Saremi A, Ghaleni MM. Sensitivity Analysis of Water Quality Parameters Related to Flow Changes in Regulated Rivers. International Journal of Environmental Science and Technology. 2022;19(4):3001–3014. https://doi.org/10.1007/s13762-021-03421-z. doi:10.1007/s13762-021-03421-z
[12] Mulla R, Bhosale S. Water Quality Modeling for Urban Reach of Yamuna river, India (1999–2009), Using QUAL2Kw. International Journal of Innovative Reasearch and Creative Technology. 2015;7(3):1535–1559. www.Ijirct.org. doi:10.1007/s13201-015-0311-1
[13] Mulla R, Bhosale S. Surface Water Resources Assessment and Planning with the QUAL2KW Model: A Case Study of the Maroon and Jarahi Basin (Iran). International Journal of Innovative Reasearch and Creative Technology. 2015;14(5). www.Ijirct.org. doi:10.3390/w14050705
[14] [KLH] Kementerian Lingkungan Hidup. Peraturan menteri Lingkungan Hidup No. 01 Tahun 2010 Tentang Tata Laksana Pengendalian Pencemaran Air. 2010.
[15] [PP] PP. Peraturan Pemerintah Republik Indonesia No. 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. 2021.
[16] Badrzadeh N, Samani JMV, Mazaheri M, Kuriqi A. Evaluation of Management Practices on Agricultural Nonpoint Source Pollution Discharges into the Rivers Under Climate Change Effects. Science of the Total Environment. 2022;838(April):156643. https://doi.org/10.1016/j.scitotenv.2022.156643. doi:10.1016/j.scitotenv.2022.156643
[17] Xu H, Gao Q, Yuan B. Analysis and Identification of Pollution Sources of Comprehensive River Water Quality: Evidence from Two River Basins in China. Ecological Indicators. 2022;135:108561. https://doi.org/10.1016/j.ecolind.2022.108561. doi:10.1016/j.ecolind.2022.108561
[18] Cazaudehore G, Schraauwers B, Peyrelasse C, Lagnet C, Monlau F. Determination of Chemical Oxygen Demand of Agricultural Wastes by Combining Acid Hydrolysis and Commercial COD Kit Analysis. Journal of Environmental Management. 2019;250(July):109464. https://doi.org/10.1016/j.jenvman.2019.109464. doi:10.1016/j.jenvman.2019.109464
[19] Djoharam V, Riani E, Yani M. Analisis Kualitas Air Dan Daya Tampung Beban Pencemaran Sungai Pesanggrahan Di Wilayah Provinsi Dki Jakarta. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). 2018;8(1):127–133. doi:10.29244/jpsl.8.1.127-133
[20] Wang F, Zhang P, Yan W, Jia M, Su X, Wang J, Tian S. Riverine organic pollution source and yield from the whole Changjiang river network: Effects of urbanization under changing hydrology. Journal of Hydrology. 2023;620(PB):129544. https://doi.org/10.1016/j.jhydrol.2023.129544. doi:10.1016/j.jhydrol.2023.129544
[21] Firmansyah YW, Setiani O, Darundiati YH. Kondisi Sungai di Indonesia Ditinjau dari Daya Tampung Beban Pencemaran: Studi Literatur. Jurnal Serambi Engineering. 2021;6(2):1879–1890. doi:10.32672/jse.v6i2.2889
[22] Ghosh S, Das AP. Bioleaching of Manganese from Mining Waste Residues using Acinetobacter sp. Geology, Ecology, and Landscapes. 2017;1(2):77–83. http://doi.org/10.1080/24749508.2017.1332847. doi:10.1080/24749508.2017.1332847
[23] Das AP, Ghosh S. Role of Microorganisms in Extenuation of Mining and Industrial Wastes. Geomicrobiology Journal. 2022;39(3–5):173–175. https://doi.org/10.1080/01490451.2022.2038953. doi:10.1080/01490451.2022.2038953
[24] Bal B, Nayak S, Das AP. Recent Advances in Molecular Techniques for the Diagnosis of Foodborne Diseases. Elsevier Inc.; 2017. http://dx.doi.org/10.1016/B978-0-12-811942-6.00013-3. doi:10.1016/B978-0-12-811942-6.00013-3
[25] Sadasivuni KK, Rattan S, Waseem S, Brahme SK, Kondawar SB, Ghosh S, Das AP, Chakraborty PK, Adhikari J, Saha P, et al. Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications. 2019. doi:10.1007/978-3-030-04741-2_11
[26] Amsayazhi P, Saravana Raja Mohan K. Use of Sludge Waste as Ingredient in Making of Brick. International Journal of Engineering & Technology. 2018;7(3.12):419. doi:10.14419/ijet.v7i3.12.16120
[27] Liang C, Le X, Fang W, Zhao J, Fang L, Hou S. The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability (Switzerland). 2022;14(8):1–20. doi:10.3390/su14084432
[28] Bilgili L, Çetinkaya AY, Sarı M. Analysis of the effects of domestic waste disposal methods on mucilage with life cycle assessment. Marine Pollution Bulletin. 2022;180(June). doi:10.1016/j.marpolbul.2022.113813
[29] Hussain I, Elomri A, Kerbache L. Domestic Waste Management with Io-enabled Applications: A Case Study of the Al Rayyan, Qatar Region. IFAC-PapersOnLine. 2022;55(10):830–835. https://doi.org/10.1016/j.ifacol.2022.09.515. doi:10.1016/j.ifacol.2022.09.515

Authors

Syiskhaeka Patri
syiskha.ekapatrisyiskha@apps.ipb.ac.id (Primary Contact)
I Putu Santikayasa
Suria Darma Tarigan
PatriS., SantikayasaI. P. and TariganS. D. (2024) “Analysis of the Pollution Load Capacity of Batang Merao Watershed in Jambi Province : Analysis of the Pollution Load Capacity of Batang Merao Watershed in Jambi Province”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 14(3), p. 641. doi: 10.29244/jpsl.14.3.641.

Article Details