Ika Purnamasari, Hidayat Pawitan, Findy Renggono


Hydrological drought is water deficit from normal conditions on the hydrological system. Hydrological drought occurs through a complex process preceded by a rainfall deficit. The series of processes that show a change of drought signals through the hydrological cycle is expressed as drought propagation. This study aims to identify the characteristics of hydrological and meteorological drought and to identify meteorological drought propagation to hydrological drought through Larona Watershade. Standardized Precipitation Index (SPI) is used as indicator to identify meteorological drought while hydrological drought is characterised by Standardised Streamflow Index (SSI) with 1, 3, 6 and 12 months accumulation periods. Propagation meteorological drought to hydrological drought was analyzed using Pearson correlation. The results showed that duration and severity escalate by the increase in the accumulation period SPI and SSI. While the number of drought events is inversely proportional to the accumulation period SPI and SSI. Althought the number of hydrological drought events was fewer, but they occurred over longer duration and much severe than the meterological one. Severe hydrological drought (SSI 1 = -14.8) in 1997-1998 has declined water storage of Lake Towuti by 90% leading to reduction in Larona hydropower production. Furthermore, our findings provide promising approach to detect hydrological drought that may occur in the near future.


[BNPB] Badan Nasional PenangSgulangan Bencana, 2015. Perbandingan jumlah kejadian bencana per jenis bencana 1815-2015. [1 S

Barker L. J., J. Hannaford, A. Chiverton1, C. Svensson, 2016. From meteorology to hydrological drought using standardize indicator. Hydrol. Earth Syst. Sci. 20, pp. 2483–2505.

Bhavani R., 2013. Comparision of mean and weighted annual rainfall in anantapuram district. International Journal of Innovative Research in Science, Engineering and Technology. 2(7): 2794-2800.

Bachmair, S., K. Stahl, K. Collins, J. Hannaford, M. Acreman, M. Svoboda, C. Knutson, K. H. Smith, N. Wall, B. Fuch, N. D.
Crossman, I. C. Overton, 2016. Drought indicators revisited: the need for a wider con-sideration of environment and society. WIREs Water. 3(4): 516-536.

Dirmeyer P., 2011. Floods and Droughts in a Changing Climate – Now and the Future.[30 Agustus 2015].
[6] Fleig A., 2004. Hydrological drought –A comparative study using daily discharge series from around the world [disertasi]. Univesitas Albert-Ludwigs., Freiburg. [30 Juni 2015].

Folland, C. K., J. Hannaford, J. P. Bloomfield, M. Ken-don, C. Svensson, B. P. Marchant, J. Prior, E. Wallace, 2015. Multiannual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year. Hydrol. Earth Syst. Sci. 19(5), pp. 2353–2375.

Gustard, A., A. Bullock, J. M. Dixon, 1992. Low flow estimation in the United Kingdom. Institute of Hydrolo-gy, Wallingford, UK. IH Report. 88(108), pp. 1992.

Guttman, N. B., 1999. Accepting the standardized pre-cipitation index: a calculation algorithm. J. Am. Water Resour. As., 35 (2), pp. 311–322.

Hayes, M., M. Svoboda, N. Wall, M. Widhalm, 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. B. Am. Meteorol. Soc. 92, pp. 485–488.

Hisdal, H., L. M. Tallaksen, B. Clausen, E. Peters, A. Gustard, 2004. Hydrological Drought Characteristics. Elsevier Science B.V. Amsterdam, the Netherlands. De-velopments in Water Science. 48(5), pp. 139–198.

Kementerian ESDM, 2015. Statistik ketenagalistrikan 2014. Direktorat Jenderal Ketenagalistrikan Kementeri-an Energi dan Sumber Daya Miner-al. [September 2015].

Lloyd-Hughes, B., 2014. The impracticality of a univer-sal drought definition. Theor. Appl. Climatol. 117, 607–611.

Lloyd-Hughes, B., M. A. Saunders, 2002. A drought climatology for Europe. Int. J. Climatol. 22, pp. 1571–1592.

Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J.C. Gonzá-lez-Hidalgo, J. I. López-Moreno, N. Cortesi, 2013. Hy-drological droughtresponse to meteorological drought in the Iberian Peninsula. Clim. Res., 58, pp. 117–131.

McKee, T. B., N. J. Doesken, J. Kleist, 1993. The Rela-tionship of Drought Frequency and duration to Time Scales, Proceding of the 8th Conference on Applied Cli-matology.

NCAR, 2006. Feasibility study for the augmentation of rain in Sulawesi. Final report to INCO Soroako Indone-sia. National Center for Atmospheric Research, Re-search Application Laboratory USA.

Renggono F., 2011. Pengaruh ENSO terhadap pola angin dan curah hujan di DAS Larona Sulawesi Selatan. Jurnal Sains dan Teknologi Modifikasi Cuaca. 12, pp. 63-68.

Sheffield, J. E. F. Wood, 2011. Drought: Past problems and future scenarios. London: Earthscan.

Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, K. Stahl, 2015. Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol. 35, 4027–4040.

Svensson, C., A. Brookshaw, A. Scaife, V. Bell, J. Mac-kay, C. Jackson, J. Hannaford, H. Davies, A. Arribas, S. Stanley, 2015. Long-range forecasts of UK winter hy-drology, Environ. Res. Lett. 10(6), 064006, pp. 1-6.

Svensson, C., J. Hannaford, I. Prosdocimi, 2017. Statis-tical distributions for monthly aggregations of precipita-tion and streamflow in drought indicator applications, Water Resour. Res. 53(2), pp. 999-1018.

Tallaksen L. M., H. A. J. Van Lanen, 2004. Hydrologi-cal drought: Processes and estimation methods for streamflow and groundwater. In: Developments in Wa-ter Science. 48. Amsterdam, theNetherlands: Elsevier Science B.V.

Tauhid Y. I., A. Jon, 2000. Pengamatan Jangka Panjang Kondisi Air Danau Towuti. Jurnal Sains & Teknologi Modifikasi Cuaca. 1(1), pp. 93-100.

Van Loon A. F., G. Lahaa, 2015. Hydrological drought severity explained by climate and catchment characteris-tics. Journal of Hydrology 526 (2015), pp. 3-14.

A. F. Van Loon, 2015. Hydrological drought explained. WIREs Water Wiley Periodicals. 2, pp. 359-392.

Vicente-Serrano, S. M. and J. I. López-Moreno, 2005. Hydrological response to different time scales of clima-tological drought: an evaluation of the Standardized Pre-cipitation Index in a mountainous Mediterranean basin, Hydrol. Earth Syst. Sci. 9, pp. 523–533.

Vicente-Serrano, S. M., J. I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina, E. Morán-Tejeda, 2012. Accurate computation of a streamflow drought index, J. Hydrol. Eng. 17, pp. 318–332.

Vidal, J. P., E. Martin, L. Franchistéguy, F. Habets, J. M. Soubeyroux, M. Blanchard, M. Baillon, 2010. Multi-level and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrol. Earth Syst. Sci., 14, pp. 459–478.

[WMO] World Meteorological Organization, 2012. Standardized Precipitation Index User Guide. WMO No 1090.

Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, F. Wen, 2007. Appropriate application of the standardized precipitation index in arid locations and dry seasons, Int. J. Climatol. 27, 65–79.


Ika Purnamasari (Primary Contact)
Hidayat Pawitan
Findy Renggono
PurnamasariI., PawitanH. and RenggonoF. (2017) “ANALISIS PENJALARAN KEKERINGAN METEOROLOGI MENUJU KEKERINGAN HIDROLOGI PADA DAS LARONA”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 7(2), pp. 163-171. doi: 10.29244/jpsl.7.2.163-171.

Article Details