Pengaruh proses autoklaf dalam pembuatan bubuk udang windu (Penaeus monodon) dan puffing snack hipoalergenik Autoclave process contribution to the production of black tiger shrimp powder (Penaeus monodon) and hypoallergenic puffing snacks

Nur Lili Nia Wulan, Nurheni Sri Palupi, Feri Kusnandar, Nur Wulandari


Shrimp, a seafood item belonging to the crustacean family, is a leading cause of food allergies owing to its high concentration of allergenic proteins, particularly tropomyosin. Shrimp may be processed into an intermediate product in the form of shrimp powder, which serves as an additional ingredient in ready-to-eat preparations, imparting a unique shrimp flavor.In the course of processing, food constituents can experience transformations that may lead to alterations in allergenicity. The objective of this study was to assess the effect of autoclave heating on the chemical composition, dissolved protein, protein molecular weight profile, allergenic protein bands, and allergenicity level of shrimp powder, and to explore the feasibility of using this powder in hypoallergenic puffing snack products. Shrimp powder was prepared through a series of autoclaving trials with durations of 5, 10, and 15 min, in addition to a control group consisting of untreated raw shrimp, which was subsequently utilized to create hypoallergenic puffed snacks. The testing conducted comprised of measurements for dissolved protein levels through the use of the Bradford method, molecular weight analysis through SDS-PAGE electrophoresis, examination of allergenic protein bands via immunoblotting, and assessment of allergenicity levels with the help of a crustacea ELISA kit. This study revealed that altering the autoclaving time had a significant impact on the chemical makeup of shrimp powder, including the dissolved protein and protein molecular weight, as well as the presence of allergen bands and allergenicity. The optimal shrimp powder in terms of reducing allergenicity is the variant that has been treated with an autoclave for 5 minutes and has an allergen content of 7.84 milligrams per gram of protein. This is the most effective option for reducing the risk of allergic reactions in shrimp sensitive individuals. The processing of raw shrimp into shrimp powder using autoclave treatment resulted in a significant reduction in allergenicity, from 98% to an undisclosed level. The incorporation of shrimp powder in puffed snacks, subjected to autoclave treatment for a period of 5 min, demonstrated a significant reduction in allergen levels, reaching up to 99%. The application of shrimp powder derived from heating in an autoclave for 5 min to puffing snacks has been shown to effectively decrease the allergenicity of snacks.


Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C., & Andersen, H. J. (2003). Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Quality and Preference, 14(2003), 277–288.
Abbott, M., Hayward, S., Ross, W., Godefroy, S. B., Ulberth, F., Hengel, A. J. V., Roberts J., Akiyama, H., Popping, B., & Yeung, J. M. (2010). Validation procedures for quantitative food allergen ELISA Methods: community guidance and best practices. Journal Of AOAC International, 93(2), 442–450.
Abramovitch, J. B., Lopata, A. L., O’Hehir, R. E., & Rolland, J. M. (2017). Effect of thermal processing on T cell reactivity of shellfish allergens - Discordance with IgE reactivity. PLoS One, 12(3), 1–18.
Ali, A. L. H., & Rosmilah, M. (2019). Effects of food processing on the stability and quality of shellfish allergens. Journal of US-China Medical Science, 16(3), 149–163.
Alia, A. N. T., Palupi, N. S., & Giriwono, P. E. (2023). Peranan teknologi proses pengolahan pangan dalam penurunan alergenisitas kerang-kerangan: meta-analisis. Jurnal Ilmu Pertanian Indonesia, 28(3), 491–496.
Arwani, A., Palupi N. S., & Giriwono P. E. (2022). Effects of different heat processing on molecular weight and allergenicity profile of white shrimp (Litopenaeus Vannamei) and mud crab (Scylla serrata) from Indonesian waters. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(1), 13–22.
Association of Official Analytical Chemistry [AOAC]. (2012). Official Methods of Analysis. The Association of Official Analytical of Chemist
Ayuso, R., Grishina, G., Bardina, L., Carrillo, T., Blanco, C., Ibáñez, M. D., Sampson, H. A., & Beyer, K. (2008). Myosin light chain is a novel shrimp allergen, Lit v 3. Journal of Allergy and Clinical Immunology, 122(4), 795–802.
Benjakul, S., Visessanguan, W., Kijroongrojana, K., & Sriket, P. (2008). Effect of heating on physical properties and microstructure of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) meats. International Journal of Food Science and Technology, 43(6), 1066–1072.
Besler, M., Steinhart, H., & Paschke, A. (2001). Stability of food allergens and allergenicity of processed foods. 756, 207–228.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Candra, Y., Setiarini, A., & Rengganis, I. (2011). Gambaran sensitivitas terhadap alergen makanan. Makara Journal of Health Research, 15(1), 44–50.
Cooper, A. (2000). Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophysical Chemistry, 85, 25–39.
Da Costa, J. P., Oliveira, D. M., Marques, D.R., Monteiro, A. R. G., & da Costa, J. M. C. (2019). Addition of powdered shrimp in the formulation of snacks. Revista Ciencia Agronomica, 50(3), 387–393.
Ekezie, F. G. C., Cheng, J. H., & Sun, D. W. (2018). Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science and Technology, 74(2018), 12–25.
Fernandes, T. M., Silva, J. A., Silva, A. H. A., Cavalheiro, J. M. O., & Conceição, M. L. (2013). Flour production from shrimp by-products and sensory evaluation of flour-based products. Pesquisa Agropecuaria Brasileira, 48(8), 962–967.
Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2001). Immunobiology: The immune system in health and disease 5th edition. Garland Publishing.
Kamath, S. D., Abdel, A. M., Komoda, T., & Lopata, A. L. (2013). Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chemistry, 141(4), 4031–4039.
Kementerian Kelautan dan Perikanan. (2019). Strategi, arah kebijakan dan program prioritas DITJEN Perikanan Budidaya.
Kementerian Kelautan dan Perikanan. (2022). Data Kelautan dan Perikanan Triwulan IV Tahun 2022. Pusat data, statistik, dan informasi. Sekretaris Jenderal Kementerian Kelautan dan Perikanan.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
Lee, A. J., Gerez, I., Shek, L. P. C., & Lee, B. W. (2012). Shellfish allergy - an Asia-Pacific perspective. Asian Pacific Journal of Allergy and Immunology, 30(1), 3–10.
Liu, H., Xu, Y., Zu S., Wu, X., Shi, A., Zhang, J., Wang, Q., & He, N. (2021). Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods, 10(8), 1-20
Liu, M., Liu, G.Y., Yang, Y., Mei, X. J., Yang, H., Li, Y., Cao, M. J., & Liu, G. M. (2018). Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain. Food Science and Technology, 98(2018), 559–567.
Long, F., Yang, X., Wang, R., Hu, X., & Chen, F. (2015). Effects of combined high pressure and thermal treatments on the allergenic potential of shrimp (Litopenaeus vannamei) tropomyosin in a mouse model of allergy. Innovative Food Science and Emerging Technologies, 29(2015), 119–124.
Margaret, M., Jinap, S., & Faizal, A. (2015). Allergens derived from shrimp. International Food Research Journal, 22(5), 1751-1754.
Mohan, C. O., Ravishankar, C. N., Gopal, T. K. S., & Bindu, J. (2008). Thermal processing of prawn ‘kuruma’ in retortable pouches and aluminium cans. International Journal of Food Science and Technology, 43(2), 200–207.
Qiao, Y., Wang, B., Ji, Y., Xu, F., Zong, P., Zhang, J., & Tian, Y. (2019). Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresource Technology, 278(2019), 287–295.
Rosset, M., Acquaro, V. R., & Beléia, A. D. P. (2012). Protein extraction from defatted soybean flour with Viscozyme L pretreatment. Journal of Food Processing and Preservation, 38(3), 784–790.
Sulistiyono, P., Herawati, D. M. D., & Arya, I. F. D. (2017). Rebon shrimp powder addition influence to nutritional values, organoleptic properties and acceptance of supplementary food by children aged 4-5 years old. Kesmas: National Public Health Journal, 11(4), 168–172.
Suryanti, S., Haryati, S., Putra, A. N., & Heryana, R. (2018). Karakteristik makanan ringan ekstrudat dari kepala udang vannamei (Litopenaeus vannamei). Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 13(1), 61-70.
Thermo Fisher Scientific Inc. (2007). Choosing a secondary antibody: A guide to fragment specificity.
Tirawanichakul, S., Phatthalung, W. N., & Tirawanichakul, Y. (2008). Drying strategy of shrimp using hot air convection and hybrid infrared radiation/hot air convection. Walailak Journal of Science and Technology, 5(1), 77–100.
Topuz, O. K., Gokoğlu, N., Jouppila, K., & Kirjoranta, S. (2017). Development of extruded shrimp-corn snack using response surface methodology. Turkish Journal of Fisheries and Aquatic Sciences, 17(2017), 334–343.
Wang, J., Tang, J., Rasco, B., Sablani, S. S., Ovissipour, M., & Qu, Z. (2018). Kinetics of quality changes of shrimp (Litopenaeus setiferus) during pasteurization. Food and Bioprocess Technology, 11(5), 1027–1038.
Zhang, Y., Wang, W., Zhou, R., Yang, J., Sheng, W., & Guo, J. (2018). Effects of heating, autoclaving and ultra-high pressure on the solubility, immunoreactivity, and structure of major allergens in egg. Food and Agricultural Immunology, 29(1), 412–423.
Zhang, Z., Yang, Y., Zhou, P., Zhang, X., & Wang, J. (2017). Effects of high-pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217(2017), 678–686.
Zheng, H., Yan, G., Lee, Y., Alcaraz, C., Marquez, S., & Mejia E. G. (2020). Effect of the extrusion process on allergen reduction and the texture change of soybean protein isolate-corn and soybean flour-corn mixtures. Innovative Food Science and Emerging Technologies, 64(2020), 1–10.


Nur Lili Nia Wulan
Nurheni Sri Palupi (Primary Contact)
Feri Kusnandar
Nur Wulandari
WulanN. L. N., PalupiN. S., KusnandarF., & WulandariN. (2024). Pengaruh proses autoklaf dalam pembuatan bubuk udang windu (Penaeus monodon) dan puffing snack hipoalergenik: Autoclave process contribution to the production of black tiger shrimp powder (Penaeus monodon) and hypoallergenic puffing snacks. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(2), 142-158.

Article Details