The Effect of Sacha Inchi Tempe on Blood Glucose, HOMA-IR, and TNF-ɑ in Rats with Metabolic Syndrome

Amalia Rani Setyawati, Gemala Anjani, Endang Mahati, Diana Nur Afifah, Ahmad Syauqy, Made Astawan, Irma Sarita Rahmawati

Abstract

This research aimed to evaluate the impact of sacha inchi tempe (Plukenetia volubilis L.) on Fasting Blood Glucose (FBG), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and Tumor Necrosis Factor Alpha (TNF-ɑ) levels. In addition, metabolic syndrome was induced in 36 male Wistar rats aged 2 months at 150–200 g weight by giving a High-Fat High-Fructose diet (HFFD) for 2 weeks. The extract was administered through oral gavage in dose-dependent manner and rats were allocated into 6 groups, namely: 1). Normal control or K0; 2). Negative control or K-; 3). Positive control or K+ with 0.18 mg/200 g BB of simvastatin; 4). Intervention with 0.9 g sacha inchi tempe or P1; 5). Intervention with 1.8 g sacha inchi tempe or P2, and; 6). Intervention with 3.6 g sacha inchi tempe or P3. Meanwhile, normal chow rats were used and served as the control group. After 2 and 5 weeks of induction and intervention, blood was drawn to determine FBG. Blood insulin was examined after 5 week of intervention. Rats were euthanized at the end of the intervention for hepatic TNF-α analysis before calculating HOMA-IR. The result showed that there was a significant difference (p<0.05) in FBG, HOMA-IR and hepatic TNF-α levels after sacha inchi tempe treatment. Rats receiving the highest dose of sacha inchi tempe had the most significant reduction (p<0.05) in FBG, HOMA-IR and hepatic TNF-α, when compared to simvastatin group. Therefore, sacha inchi tempe could attenuate glycemic and inflammation profiles in metabolic syndrome.

References

Ahmed M, Kumari N, Mirgani Z, Saeed A, Ramadan A, Ahmed MH, Almobarak AO. 2022. Metabolic syndrome: Definition, pathogenesis, elements, and the effects of medicinal plants on it’s elements. J Diabetes Metab Disord 21 1011–1022. https://doi.org/10.1007/s40200-021-00965-2
Ahnan-Winarno AD, Cordeiro L, Winarno FG, Gibbons J, Xiao H. 2021. Tempe: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comp Rev Food Sci Food Safe 20(2):1717–1767. https://doi.org/10.1111/1541-4337.12710
Ambulay JP, Rojas PA, Timoteo OS, Barreto TV, Colarossi A. 2020. Effect of the emulsion of Sacha Inchi (Plukenetia huayabambana) oil on oxidative stress and inflammation in rats induced to obesity. J Funct Foods 64:103631. https://doi.org/10.1016/j.jff.2019.103631
Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. 2016. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res 64:30–56. https://doi.org/10.1016/j.plipres.2016.07.002
Barrios-Ramos J, Garduño-Siciliano L, Loredo-Mendoza M, Chamorro-Cevallos, Jaramillo-Flores M. 2014. A quick model for the induction of metabolic syndrome markers in rats. Intern Med 4(2). https://doi.org/10.4172/2165-8048.1000137
Battung SM, Salam A, Novrianti D, Kurnia Ajie RA. 2019. Efek diet tinggi karbohidrat terhadap glukosa darah dan berat badan tikus wistar. JGMI 8(2). https://doi.org/10.30597/jgmi.v8i2.8506
Bueno-Borges LB, Sartim MA, Gil CC, Sampaio SV, Rodrigues PHV, Regitano-d’Arce MAB. 2018. Sacha inchi seeds from sub-tropical cultivation: Effects of roasting on antinutrients, antioxidant capacity, and oxidative stability. J Food Sci Technol 55:4159–4166. https://doi.org/10.1007/s13197-018-3345-1
Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SMF. 2017. Brazil nuts: Nutritional composition, health benefits and safety aspects. Int Food Res 100:9–18. https://doi.org/10.1016/j.foodres.2017.08.036
Chan DC, Watts GF. 2011. Dyslipidaemia in the metabolic syndrome and type 2 diabetes: Pathogenesis, priorities, pharmacotherapies. Expert Opin Pharmacother 12(1):13–30. https://doi.org/10.1517/14656566.2010.502529
Crespo MJ, Quidgley J. 2015. Simvastatin, atorvastatin, and pravastatin equally improve the hemodynamic status of diabetic rats. WJD 6(10):1168. https://doi.org/10.4239/wjd.v6.i10.1168
do Prado FG, Pagnoncelli MGB, De Melo Pereira GV, Karp SG, Soccol CR. 2022. Fermented soy products and their potential health benefits: A review. Microorganisms10(8):1606. https://doi.org/10.3390/microorganisms10081606
El-Saka MH, Abo El Gheit RE, El Saadany A, Alghazaly GM, Marea KE, Madi NM. 2023. Effect of spexin on renal dysfunction in experimentally obese rats: Potential mitigating mechanisms via galanin receptor-2. Arch Physiol Biochem 129(4):933–942. https://doi.org/10.1080/13813455.2021.1887265
Fahed G, Aoun L, Bou Zerdan, Morgan, Allam S, Bou Zerdan, Maroun, Bouferraa Y, Assi HI. 2022. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci 23(2):786. https://doi.org/10.3390/ijms23020786
Fawzy Fahim V, Wadie W, Shafik AN, Ishak Attallah M. 2019. Role of simvastatin and insulin in memory protection in a rat model of diabetes mellitus and dementia. Brain Res Bull 144:21–27. https://doi.org/10.1016/j.brainresbull.2018.10.012
Fitria L, Muyati M, Tiraya CM, Budi AS. 2018. Profil reproduksi jantan tikus (Rattus norvegicus Berkenhout 1769) galur wistar stadia muda, pradewasa, dan dewasa. J Biol Papua 7(1):29–36. https://doi.org/10.31957/jbp.429
Fu J, Zheng Y, Gao Y, Xu W. 2022. Dietary Fiber intake and gut microbiota in human health. Microorganisms 10(12):2507. https://doi.org/10.3390/microorganisms10122507
Ghadge A, Harsulkar A, Karandikar M, Pandit V, Kuvalekar A. 2016. Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats. Genes Nutr 11:1–12. https://doi.org/10.1186/s12263-016-0518-4
González Hernández MA, Canfora EE, Jocken JW, Blaak EE. 2019. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11(8):1943. https://doi.org/10.3390/nu11081943
Grandl G, Wolfrum C. 2018. Hemostasis, endothelial stress, inflammation, and metabolic syndrome. Semin Immunopathol 40:215–224. https://doi.org/10.1007/s00281-017-0666-5
Hadi NR, Abdelhussein MA, Rudha ARM, Rudha ARM, Jamil DA, Al-Aubaidy HA. 2015. Simvastatin use in patients with type 2 diabetes mellitus: The effects on oxidative stress. Oman Med J 30(4):237–240. https://doi.org/10.5001/omj.2015.49
Herningtyas EH, Ng TS. 2019. Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health 19:1–12. https://doi.org/10.1186/s12889-019-6711-7
Hidayati L, Widodo ADW, Hidayat B. 2020. Animal models with metabolic syndrome markers induced by high fat diet and fructose. Med Lab Tech J 6(1). https://doi.org/10.31964/mltj.v1i1.266
Huang YC, Wu BH, Chu YL, Chang WC, Wu MC. 2018. Effects of tempe fermentation with lactobacillus plantarum and rhizopus oligosporus on streptozotocin-induced type II diabetes mellitus in rats. Nutrients 10(9):1143. https://doi.org/10.3390/nu10091143
Hussain Y, Jain SK, Samaiya PK. 2019. Short-term Westernized (HFFD) diet fed in adolescent rats: Effect on glucose homeostasis, hippocampal insulin signaling, apoptosis and related cognitive and recognition memory function. Behavioural Brain Research 361:113–121. https://doi.org/10.1016/j.bbr.2018.12.042
Jamalan M, Rezazadeh M, Zeinali M, Ghaffari MA. 2015. Effect of ascorbic acid and alpha-tocopherol supplementations on serum leptin, tumor necrosis factor alpha, and serum amyloid A levels in individuals with type 2 diabetes mellitus. Avicenna J Phytomed 5(6):531–539.
Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. 2021. The effect of Sorghum Tempe (Sorghum bicolor L. Moench) on Low-Density Lipoprotein (LDL) and Malondialdehyde (MDA) levels in atherogenic diet-induced rats. Potr S J F Sci 15:662–671. https://doi.org/10.5219/1589
König M, Bulik S, Holzhütter HG. 2012. Quantifying the contribution of the liver to glucose homeostasis: A detailed kinetic model of human hepatic glucose metabolism. Plos Comput Biol 8(6):e1002577. https://doi.org/10.1371/journal.pcbi.1002577
Moller DE. 2000. Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes. Trends in Endocrinology & Metabolism 11(6):212–217. https://doi.org/10.1016/S1043-2760(00)00272-1
Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R. 2015. Physicochemical properties of Malaysian-grown tropical almond nuts (Terminalia catappa). J Food Sci Technol 52:6623–6630. https://doi.org/10.1007/s13197-015-1737-z
Nurrahman N, Astuti M, Suparmo S, Soesatyo MH. 2013. The role of black soybean tempe in increasing antioxidant enzyme activity and human lymphocyte proliferation in vivo. Int J Curr Microbiol App Sci 2:316–327.
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. 2021. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 144:112287. https://doi.org/10.1016/j.biopha.2021.112287
Putri BMMaulina B, Wasita B, Febrinasari RP. 2022. The effect of combined extracts of sappan wood (Caesalpinia sappan L.) and gotu kola (Centella asiatica L.) in improving diabetic condition in rats. J Gizi Pangan 17(1):37–46. https://doi.org/10.25182/jgp.2022.17.1.37-46
Rico R, Bulló M, Salas-Salvadó J. 2016. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci Nutr 4(2):329–338. https://doi.org/10.1002/fsn3.294
Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, Valenzuela A. 2016. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot Essent Fatty Acids 111:25–35. https://doi.org/10.1016/j.plefa.2016.02.002
Rojanaverawong W, Wongmanee N, Hanchang W. 2023. Sacha Inchi ( Plukenetia volubilis L.) oil improves hepatic insulin sensitivity and glucose metabolism through insulin signaling pathway in a rat model of type 2 diabetes. Prev Nutr Food Sci 28(1):30–42. https://doi.org/10.3746/pnf.2023.28.1.30
Salam DA, Afifah DN, Purwanti R, Anjani G. 2023. Potensi Kacang Sacha Inchi (Plukenetia volubilis. L) Sebagai Bahan Baku Pembuatan Tempe Tinggi Asam Lemak Tak Jenuh Ganda. [Thesis] Semarang: Diponegoro University.
Sasváriová M, Micháliková D, Tyukos Kaprinay B, Salvaras L, Hričáková S, Knezl V, Gáspárová Z, Stankovičová T. 2019. The effect of venlafaxine on blood pressure and ECG in rats fed with high-fat-fructose diet. Interdiscip Toxicol 12(4):192–199. https://doi.org/10.2478/intox-2019-0024
Shen Y, Prinyawiwatkul W, Xu Z. 2019. Insulin: A review of analytical methods. Analyst 144(14):4139–4148. https://doi.org/10.1039/C9AN00112C
Sholihah SW, Firmansyah M, Damayanti DS. 2018. Efek pemberian minyak atsiri daun sirsak (Annona muricata Linn) terhadap penurunan kadar Tumor Necrosis Factor Alpha (TNF-α) hepar tikus wistar jantan yang diinduksi rifampisin. JKI 7. https://doi.org/10.33474/jki.v7i01.975
Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. 2016. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the West Virginian population. Int J Med Sci 13(1):25–38. https://doi.org/10.7150/ijms.13800
Subiyono S, Martsiningsih MA, Gabrella D. 2016. Gambaran kadar glukosa darah metode GOD-PAP (Glucose Oxsidase Peroxidase Aminoantypirin) sampel serum dan plasma EDTA (Ethylen Diamin Terta Acetat). Jurnal Teknologi Laboratorium 5(1):45–48.
Torres-Sánchez E, Hernández-Ledesma B, Gutiérrez LF. 2023. Isolation and characterization of protein fractions for valorization of sacha inchi oil press-cake. Foods 12(12):2401. https://doi.org/10.3390/foods12122401
Tugrul Sezer M, Katirci S, Demir M, Erturk J, Adana S, Kaya S. 2007. Short-term effect of simvastatin treatment on inflammatory parameters in peritoneal dialysis patients. Scand J Urol Nephrol 41(5):436–441. https://doi.org/10.1080/00365590701517244
Ulfa R, Sulchan M, Anjani G. 2022. Effects of kedawung seed tempe flour (Parkia roxburghii G.Don) on albumin levels and hemoglobin levels in Protein Energy Malnutrition (PEM) rats. Jurnal Aisyah: Jurnal Ilmu Kesehatan 7(2). https://doi.org/10.30604/jika.v7i2.1027
[USDA] U.S. Department of Agriculture. 2021. FoodData Central. https://fdc.nal.usda.gov/ [Accessed 25th March 2024].
Vanegas-Azuero AM, Gutiérrez LF. 2018. Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. Journal of Dairy Science 101(2):1020–1033. https://doi.org/10.3168/jds.2017-13235
Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB, Willett WC, Hu, FB. 2016. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med 176(8):1134–1145. https://doi.org/10.1001/jamainternmed.2016.2417
Wang HH, Lee DK, Liu M, Portincasa P, Wang DQH. 2020. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr 23(3):189–230. https://doi.org/10.5223/pghn.2020.23.3.189
Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S. 2016. Animal models of metabolic syndrome: A review. Nutr Metab (Lond) 13:1–12. https://doi.org/10.1186/s12986-016-0123-9
Wongmanee N, Rojanaverawong W, Boonsong T, Hanchang W. 2024. Antihyperglycemic effect of extra virgin sacha inchi oil in type 2 diabetic rats: Mechanisms involved in pancreatic β-cell function and apoptosis. J Tradit Complement Med 14:148–161. https://doi.org/10.1016/j.jtcme.2023.08.005
Zhang N, Kong F, Jing X, Zhou J, Zhao L, Soliman MM, Zhang L, Zhou F. 2022. Hongqu rice wines ameliorate high-fat/high-fructose diet-induced metabolic syndrome in rats. Alcohol Alcohol 57(6):776–787. https://doi.org/10.1093/alcalc/agac033

Authors

Amalia Rani Setyawati
Gemala Anjani
Endang Mahati
endang.mahati@fk.undip.ac.id (Primary Contact)
Diana Nur Afifah
Ahmad Syauqy
Made Astawan
Irma Sarita Rahmawati
SetyawatiA. R., AnjaniG., MahatiE., AfifahD. N., SyauqyA., AstawanM., & RahmawatiI. S. (2024). The Effect of Sacha Inchi Tempe on Blood Glucose, HOMA-IR, and TNF-ɑ in Rats with Metabolic Syndrome. Jurnal Gizi Dan Pangan, 19(2), 97-106. https://doi.org/10.25182/jgp.2024.19.2.97-106

Article Details