Estrous Signs and Progesterone Profile of Ongole Grade Cows Synchronized at Different Ages Fed Different Level of Dietary Crude Protein

  • R. N. Hayati Assessment Institute for Agricultural Technology of Central Java
  • Panjono Panjono Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada
  • A. Irawan Vocational School, Universitas Sebelas Maret
Keywords: estrous, Ongole grade cows, progesterone, protein supplementation, reproduction

Abstract

This study aimed to evaluate the effects of concentrate supplementation containing different protein levels on estrous signs and progesterone profiles of two age groups of Ongole Grade cow. Thirty females cows were grouped according to their ages (G1= 25±1.6 months; G2= 37±1.7 months), where each group received 3 dietary treatments with 5 replicates. The dietary treatment was based on CP levels of total mixed ration (TMR) (T1= 7.41% CP; T2= 8.23% CP; and T3= 9.17% CP). The cows were synchronized using PGF2α and GnRH, followed by time-fixed artificial insemination (TAI) using frozen semen. Data on nutrient intake and progesterone concentration were subjected to a randomized complete block design of ANOVA following a factorial arrangement of 2×3 while data of estrous signs were analyzed using non-parametric methods of Kruskal-Wallis and independent t-test. The results showed that there was a significant interaction effect between age group and dietary TMR treatment on CP intake and TDN intake in which the highest intakes were found in older cows (G2) fed TMR at 7.41% CP (T1) (p<0.01). Dry matter intake (DMI) was not affected either by age group or level of concentrate supplementation. Results also suggested that estrous signs, including vulva redness, swollen vulva, and mucus discharge, were higher in older cows (G2) than in younger cows (G1). In addition, interactions were also found on progesterone levels, whereas younger cows (G1) fed TMR with 9.17% CP (T3) showed the highest concentration of progesterone on d 5, 17, and 21 (p<0.01). In conclusion, this study suggests that younger cows receiving the highest CP diet (T3) result in higher progesterone concentration during the experimental period. Therefore, it is important to fed sufficient dietary CP especially for cattle in early reproduction period to optimize the reproductive performance.

Downloads

Download data is not yet available.

References

Alves, N. G., C. A. A. Torres, J. D. Guimarães, E. A. Moraes, M. T. Rodrigues, P. R. Cecon, L. L. Bitencourt, & L. D. S. Amorim. 2011. Effect of urea in the diet on ovarian follicular dynamics and plasma progesterone concentration in Alpine goats. R. Bras. Zootec. 40: 1512-1518. https://doi.org/10.1590/S1516-35982011000700016

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.

Astuti, D., B. Suhartanto, N. Umami, & A. Irawan. 2020. Productivity, nutrient composition, and hydrocyanic acid concentration of Super-2 forage sorghum at different NPK levels and planting spaces. Trop. Anim. Sci. J. 42:189-195. https://doi.org/10.5398/tasj.2019.42.3.189

Bishop, B. E., J. M. Thomas, J. M. Abel, S. E. Poock, M. R. Ellersieck, M. F. Smith & D. J. Patterson. 2017. Split-time artificial insemination in beef cattle: III. Comparing fixed-time artificial insemination to split-time artificial insemination with delayed administration of GnRH in postpartum cows. Theriogenology. 99:48-52. https://doi.org/10.1016/j.theriogenology.2017.04.046

Broes, A. & S. J. LeBlanc. 2014. Comparison of commercial progesterone assays for evaluation of luteal status in dairy cows. Can. Vet. J. 55: 582-584.

Chen, S., P. Paengkoun, & X. Xia. 2012. Effect of dietary crude protein and undegradable intake protein on nitrogen utilization and growth performance of groeing Thai-indogenous beef cattle. Trop. Anim. Health Prod. 51:1151-1159. https://doi.org/10.1007/s11250-019-01799-0

Dahlen, C., J. Larson, & G. C. Lamb. 2014. Impacts of reproductive technologies on beef production in the United States. Current and Future Reproductive Technologies and World Food Production. Springer, New York, NY, USA, pp. 97-114. https://doi.org/10.1007/978-1-4614-8887-3_5

Diskin, M. G. & D. A. Kenny. 2016. Managing the reproductive performance of beef cows. Theriogenology. 86:379-387. https://doi.org/10.1016/j.theriogenology.2016.04.052

Dung, D. V., H. Roubík, L. D. Ngoan, L. D. Phung, & N. X. Ba. 2019. Characterization of smallholder beef cattle production system in Central Vietnam -revealing performance, trends, constraints, and future development. Trop. Anim. Sci. J. 42: 253-260. https://doi.org/10.5398/tasj.2019.42.3.253

Frade, M. C., C. Frade, M.B. Cordeiro, M.F. Sá Filho, F.S. de, Mesquita, G. Nogueira, P. de, M. Binelli, & C.M.B. Membrive. 2014. Manifestation of estrous behavior and subsequent progesterone concentration at timed-embryo transfer in cattle are positively associated with pregnancy success of recipients. Anim. Reprod. Sci. 151:85-90. https://doi.org/10.1016/j.anireprosci.2014.09.005

Frandson, R. D, W. L. Wilke, & A. D. Fails. 2003. Anatomy and Physiology of Farm Animal. 7th ed. Lippincott Williams and Wilkins, Philadelphia.

Gading, M. B. W. T., A. Agus, A. Irawan, & P. Panjono. 2020. Growth performance, hematological and mineral profile of post‐weaning calves as influenced by inclusion of pelleted‐concentrate supplement containing essential oils and probiotics. Iran. J. Appl. Anim. Sci. 10:461-468.

Geppert, T. C., A. M. Meyer, G. A. Perry, & P. J. Gunn. 2017. Effects of excess metabolizable protein on ovarian function and circulating amino acids of beef cows: 2. Excessive supply in varying concentrations from corn gluten meal. Animal. 11: 634-642. https://doi.org/10.1017/S1751731116001890

Kasimanickam, R., K. Jorgensen-Muga, J. Beumeler, K. Ratzburg, A. Kapi, V. Kasimanickam & J. Kastelic. 2020. Estrous response and pregnancy percentages following use of a progesterone-based, split-time estrous synchronization treatment regimens in beef heifers. Anim. Reprod. Sci. 221:106544. https://doi.org/10.1016/j.anireprosci.2020.106544

Layek, S. S., T. K. Mohanty, A. Kumaresan, K. Behera, & S. Chand. 2011. Behavioural signs of estrous and their relationship to time of ovulation in Zebu (Sahiwal) cattle. Anim. Reprod. Sci. 129:140-145. https://doi.org/10.1016/j.anireprosci.2011.11.006

Law, R. A., F. J. Young, D. C. Patterson, D. J. Kilpatrick, A. R. G. Willie, & C. S. Mayne. 2009. Effect of dietary protein content on the fertility of dairy cows during early and mid lactation. J. Dairy Sci. 92:2737-2746. https://doi.org/10.3168/jds.2008-1420

Lents, C. A., F. J. White, N. H Ciccioli, R. P Wettemann, L. J. Spicer, & D . L. Lalman. 2015. Effect of body condition score at parturition and postpartum protein supplementation on estrous behavior and size of the dominant follicle in beef cattle. J. Anim. Sci. 86:2549-2556. https://doi.org/10.2527/jas.2008-1114

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R.G. Wilkinson. 2011. Animal Nutrition, 7th ed. Pearson, Harlow.

Mondal, M., C. Rajkhowa, & B. S. Prakash. 2006. Behavioral estrous signs can predict the time of ovulation in mithun (Bos frontalis). Theriogenology. 66:1391-1396. https://doi.org/10.1016/j.theriogenology.2006.04.033

Moore, S. G., S. Scully, J. A. Browne, T. Fair & S. T. Butler. 2014. Genetic merit for fertility traits in Holstein cows: V. Factors affecting circulating progesterone concentrations. J. Dairy Sci. 97:5543-5557. https://doi.org/10.3168/jds.2014-8133

Moran, C., J.F. Quirke, & J.F. Roche. 2010. Puberty in beef heifers: A review. Anim. Reprod. Sci. 18:167-182. https://doi.org/10.1016/0378-4320(89)90019-5

NRC. 2000. Nutritional Requirements of Beef Cattle. 7th Revised ed. The Natural Academic Press, Washington D.C.

Oosthuizen, N., R. F. Cooke, K. M. Schubach, P. L. P. Fontes, A. P. Brandão, R. V. Oliveira Filho, E. A. Colombo, G. A. Franco, S. Reese, K. G. Pohler, & G. C. Lamb. 2020. Effects of estrous expression and intensity of behavioral estrous symptoms on variables associated with fertility in beef cows treated for fixed-time artificial insemination. Anim. Reprod. Sci. 214:106308. https://doi.org/10.1016/j.anireprosci.2020.106308

Orihuela, Â. 2000. Some factors affecting the behavioural manifestation of oestrus in cattle: a review. Appl. Anim. Behav. Sci. 70:1-16. https://doi.org/10.1016/S0168-1591(00)00139-8

Puzio, N., C. Purwin, Z. Nogalski, I. Białobrzewski, L. Tomczyk, & J. P. Michalski. 2019. The effects of age and gender (bull vs steer) on the feeding behavior of young beef cattle fed grass silage. Asian-Australas. J. Anim. Sci. 232:1211-1218. https://doi.org/10.5713/ajas.18.0698

Ramachandran, R., A. Vinothkumar, D. Sankarganesh, U. Suriyakalaa, V. S. Aathmanathan, S. Kamalakkannan, V. Nithya, J. Angayarkanni, G. Archunan, M. A. Akbarsha, & S. Achiraman. 2020. Detection of estrous biomarkers in the body exudates of Kangayam cattle (Bos indicus) from interplay of hormones and behavioral expressions. Domest. Anim. Endocrin. 72:106392. https://doi.org/10.1016/j.domaniend.2019.106392

Ratnawati, D., D.A. Indrakusuma, L. Affandhy, F. Cowley, D. Mayberry, & D. Poppi. 2017. Strategi manajemen untuk meningkatkan perfomans produksi reproduksi sapi Brahman Cross (Bos indicus) di Jawa Timur, Indonesia. JITV. 21: 231-237. https://doi.org/10.14334/jitv.v21i4.1512

Riaz, M. Q., K. H. Südekum, M. Clauss, & A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: a meta-analysis. Livest. Sci. 162:76-85. https://doi.org/10.1016/j.livsci.2014.01.009

Robinson, J. J., C. J. Asworth, J. A. Rooke, L. M. Mitchell, & T. G McEvoy. 2006. Nutrition and fertility in livestock. Anim. Feed Sci. Technol. 126: 259-276. https://doi.org/10.1016/j.anifeedsci.2005.08.006

Rodrigues, A. D., R. F. Cooke, R. S. Cipriano, L. G. T. Silva, R. L. A. Cerri, & L. H. Cruppe. 2018. Impacts of estrus expression and intensity during a timed-AI protocol on variables associated with fertility and pregnancy success in Bos indicus-influenced beef cows 1. J. Anim. Sci. 96:236-249. https://doi.org/10.1093/jas/skx043

Rosales-Torres, A. M., Z. B. López-Cedillo, C. G. Hernández-Coronado, J. V. Rosete-Fernández, G. D. Mendoza1, & A. Guzmán. 2016. Short-term dietary concentrate supplementation during estrus synchronization treatment in beef cows increased IGF-I serum concentration but did not affect the reproductive response. Trop. Anim. Health Prod. 49:221–226. https://doi.org/10.1007/s11250-016-1166-7

Schubach, K. M., R. F. Cooke, A. P. Brandão, K. D. Lippolis, L. G. T. Silva, R. S. Marques, & D. W. Bohnert. 2017. Impacts of stocking density on development and puberty attainment of replacement beef heifers. Animal. 12: 2260-2267. https://doi.org/10.1017/S1751731117001070

Shirasuna, K. 2010. Nitric oxide and luteal blood flow in the luteolytic cascade in the cow. J. Reprod. Dev. 56:9-14. https://doi.org/10.1262/jrd.09-206E

Silper, B. F., A. M. L. Madureira, M. Kaur, T. A. Burnett, & R. L. A. Cerri. 2015. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. J. Dairy Sci. 98:3158-3165. https://doi.org/10.3168/jds.2014-9185

Spencer, T. E., N. Forde & P. Lonergan. 2016. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 99:5941-5950. https://doi.org/10.3168/jds.2015-10070

Sonjaya, H., L. Rahim, D. K. Sari, A. Abdullah, S. Gustina, & H. Hasbi. 2020. Estrous and pregnancy rate responses of postpartum Bali cattle to concentrate supplementation with different protein levels of rice-straw as basal ration. IOP Conf. Series: Earth and Environmental Science. 492:012075. https://doi.org/10.1088/1755-1315/492/1/012075

Sutiyono, S., D. Samsudewa, & A. Suryawijaya. 2018. Estrus and pregnancy rate of Simmental-O’ngole crossbred and Ongole grade heifer after being synchronized and inseminated. J. Indones. Trop. Anim. Agric. 43:438-444. https://doi.org/10.14710/jitaa.43.4.438-444

Published
2021-03-09
How to Cite
Hayati, R. N., Panjono, P., & Irawan, A. (2021). Estrous Signs and Progesterone Profile of Ongole Grade Cows Synchronized at Different Ages Fed Different Level of Dietary Crude Protein. Tropical Animal Science Journal, 44(1), 16-23. https://doi.org/10.5398/tasj.2021.44.1.16