β-casein Variants and Anti-oxidant Profiles of Milk of Siquijor Native Cattle (Bos taurus indicus L.) as Compared to those of Holstein Friesian x Sahiwal Cattle

  • G. T. A. Cuevas Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas
  • A. A. Angeles Dairy Training and Research Institute, College of Agriculture and Food Science, University of the Philippines Los Baños
  • F. E. Merca Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños
  • A. J. Salces Animal Breeding Division, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños
Keywords: milk, urea denaturation, A1 β-CN, A2 β-CN, DPPH scavenging


The study aims to isolate, characterize, and evaluate the antioxidant activity of A1 and A2 β-casein (β-CN) variants from milk of Siquijor native cattle (SN) and compare it to that of Holstein Friesian x Sahiwal (HF). Four milk samples from SN and three milk samples from HF, collected at 60-90 days during the first and second parities, were used in this study. Caseins were isolated from the milk samples by isoelectric precipitation at pH 4.5, urea denaturation, and SDS-PAGE. The fractions were quantified by Bradford assay. Antioxidant activity of the fractions was determined by DPPH scavenging assay. All the samples were analyzed using one-way ANOVA to determine the statistical difference. The concentrations of β-CN variants isolated from the milk of Siquijor native cattle and the milk of Holstein Friesian x Sahiwal were not significantly different (p>0.05). All of the casein samples exhibited DPPH scavenging activity with A2 β-CN exhibiting significantly higher scavenging activity (p<0.05). SN1 A2 β-CN exhibited the highest DPPH scavenging activity at 5.298% ± 0.17 among all of the samples. These results indicate that A2 β-CN may play a vital role in maintaining antioxidant homeostasis in the human body when the milk is consumed. These results also indicate the significance of A2 β-CN in extending the shelf-life of milk and other dairy products. In conclusion, this study successfully fractionated and characterized both A1 and A2 β-CN variants in the milk of Siquijor native cattle and Holstein Friesian x Sahiwal, with A2 β-CN having higher antioxidant activity compared to A1 β-CN.


Download data is not yet available.


Aoki, T., N. Yamada, & Y. Kako. 1988. Dissociation during dialysis of casein aggregates cross-linked by colloidal calcium phosphate in bovine casein micelles. J. Dairy Sci. 55:189-195. https://doi.org/10.1017/s0022029900026017

Atamer, Z., A. E. Post, T. Schubert, A. Holder, R. M. Boom, & J. Hinrichs. 2017. Bovine β-casein: Isolation, properties and functionality. A review. Int. Dairy. J. 66:115-125. https://doi.org/10.1016/j.idairyj.2016.11.010

Bijl, E., T. Huppertz, H. van Valenberg, & C. Holt. 2018. A quantitative model of the bovine casein micelle: ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk. Eur. Biophys. J. 48:45-59. https://doi.org/10.1007/s00249-018-1330-2

Boro, P., B. C. Naha, D. P. Saika, & C. Prakash. 2016. A1 and A2 milk and its impact on human health. Int. J. Sci. 7:1-5.

Castillo, C., V. Pereira, A. Abuelo, & J. Hernández. 2013. Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. 2013:1-8. https://doi.org/10.1155/2013/616098

Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto, & K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agri. Food Chem. 46:49–53. https://doi.org/10.1021/jf970649w

Dinesh, M., D. Sahoo, J. C. Thakor, H. S. Yadav, R. Manikandan, J. Keerthana, A. Muthukumar, R. Pradeep, & M. Sahoo. 2020. A1 and A2 Milk: Truth vs. Hype. A Magazine of Agriculture and Allied Sciences. 3:6-13.

Duarte-Vázquez, M. A., C. R. Garcia-Ugalde, B. E. Alvarez, L. M. Villegas, B. E. Garcia-Almendarez, J. L. Rosado, & C. Regalado. 2018. Use of urea-polyacrylamide electrophoresis for discrimination of A1 and A2 beta casein variants in raw cow’s milk. J. Food Sci. Technol. 55:1942-1947. https://doi.org/10.1007/s13197-018-3088-z

Givens, I., P. Aikman, T. Gibson, & R. Brown. 2013. Proportions of A1, A2, B and C β-casein protein variants in retail milk in the UK. Food Chem. 139:549–552. https://doi.org/10.1016/j.foodchem.2013.01.115

Gomez, K. A. & A. A. Gomez. 1984. Statistical Procedures for Agricultural Research. 2nd ed. John Wiley and Sons, New York.

Hamin Neto, Y. A. A., J. C. Rosa, & H. Cabral. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Prep. Biochem. Biotechnol. 49:639-648. https://doi.org/10.1080/10826068.2019.1566147

Huppertz, T., I. Gazi, H. Luyten, H. Nieuwenhuijse, A. Alting, & E. Schokker. 2017. Hydration of casein micelles and caseinates: Implications for casein micelle structure. Int. Dairy J. 74:1-11. https://doi.org/10.1016/j.idairyj.2017.03.006

Jan, S. A., Z. K. Shinwari, M. A. Rabbani, S. H. Shah, M. I. Ibrahim, & M. Ilyas. 2016. Optimization of an efficient SDS-PAGE protocol for rapid protein analysis of Brassica rapa. J. Bio. Envi. Sci. 9:17-24.

Jawale, B., A. Kaluskar, J. Garde, & S. Sabonis. 2017. “The Reality of the White” A1 vs A2 Milk - A Critical Review. Int. J. Sci. Res. 6:1844-1846.

Kaskous, S. 2020. A1- and A2- milk and their effect on human health. J. Food Eng. Technol. 9:15-21. https://doi.org/10.32732/jfet.2020.9.1.15

Khan, I. T., M. Nadeem, M. Imran, R. Ullah, M. Ajmal, & M. H. Jaspal. 2019. Antioxidant properties of milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 18:41. https://doi.org/10.1186/s12944-019-0969-8

Kielkopf, C. L., W. Bauer, & I. L. Urbatsch. 2020. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 4:136-138. https://doi.org/10.1101/pdb.prot102269

Kirk, B., J. Mitchell, M. Jackson, F. Amirabdollahian, O. Alizadehkhaiyat, & T. Clifford. 2017. A2 milk enhances dynamic muscle function following repeated sprint exercise, a possible ergogenic aid for A1-protein intolerant athletes?. Nutrients. 9:1-14. https://doi.org/10.3390/nu9020094

Lucarini, M. 2017. Bioactive peptides in milk: From encrypted sequences to nutraceutical aspects. Beverages. 3:41. https://doi.org/10.3390/beverages3030041

Massella, E., S. Piva, F. Giacometti, G. Liuzzo, A. V. Zambrini, & A. Serriaino. 2017. Evaluation of bovine beta casein polymorphism in two dairy farms located in northern Italy. Ital. J. Food Saf. 6:6904. https://doi.org/10.4081/ijfs.2017.6904

O’Brien, K. T., C. Mooney, C. Lopez, G. Pollastri, & D. C. Shields. 2020. Prediction of polyproline II secondary structure propensity in proteins. R. Soc. Open Sci. 7:191239. https://doi.org/10.1098/rsos.191239

Petrat-Melin, B., P. Andersen, J. T. Rasmussen, N. A. Poulsen, L. B. Larsen, & J. F. Young. 2015. In vitro digestion of purified β-casein variants A1 and A2, B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity. J. Dairy Sci. 98:15-26. https://doi.org/10.3168/jds.2014-8330

Rival, S. G., C. G. Boeriu, & H. J. Wichers. 2001. caseins and casein hydrolysates. 2. antioxidative properties and relevance to lipoxygenase inhibition. J. Agri. Food Chem. 49:295-302. https://doi.org/10.1021/jf0003911

Salmen, S. H., H. Abu-Tabrboush, A. A. Al-Saleh, & A. A. Metwalli. 2011. Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. Saudi J. Biol. Sci. 19:177-183. https://doi.org/10.1016/j.sjbs.2011.12.002

Shazly, A. B., Z. He, M. A. El-Aziz, M. Zeng, S. Zhang, F. Qin, & J. Chen. 2017. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem. 232: 753-762. https://doi.org/10.1016/j.foodchem.2017.04.071

Silveira, D., A. M. M. F. de Melo, P. O. Magalhães, & Y. M. Fonseca-Bazzo. 2017. Tabernaemontana species: Promising sources of new useful drugs. Studies in Natural Products Chemistry. 54:227–289. https://doi.org/10.1016/B978-0-444-63929-5.00007-3

Thekkilaveedu, S., V. Krishnaswami, D. P. Mohanan, S. Alagarsamy, S. Natesan, & R. Kandasamy. 2019. Lactic acid‐mediated isolation of alpha‐, beta‐ and kappa‐casein fractions by isoelectric precipitation coupled with cold extraction from defatted cow milk. Int. J. Dairy Technol. 73:31-39. https://doi.org/10.1111/1471-0307.12646

Whitney, R. M., J. R. Brunner, K. E. Ebner, H. M. Farrell Jr., R. V.Josephson, C. V. Morr, & H. E. Swaisgood. 1976. Nomenclature of the Proteins of Cow’s Milk: Fourth Revision. J. Dairy. Sci. 59:795-815. https://doi.org/10.3168/jds.s0022-0302(76)84280-4

Xu, Y., D. Liu, H. Yang, J. Zhang, X. Liu, J. M. Regenstein, Y. Hemar, & P. Zhou. 2016. Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocoll. 60: 59-66. https://doi.org/10.1016/j.foodhyd.2016.03.026

How to Cite
Cuevas, G. T. A., Angeles, A. A., Merca, F. E., & Salces, A. J. (2021). β-casein Variants and Anti-oxidant Profiles of Milk of Siquijor Native Cattle (Bos taurus indicus L.) as Compared to those of Holstein Friesian x Sahiwal Cattle. Tropical Animal Science Journal, 44(1), 108-114. https://doi.org/10.5398/tasj.2021.44.1.108