β-casein Variants and Anti-oxidant Profiles of Milk of Siquijor Native Cattle (Bos taurus indicus L.) as Compared to those of Holstein Friesian x Sahiwal Cattle

G. T. A. Cuevas, A. A. Angeles, F. E. Merca, A. J. Salces

Abstract

The study aims to isolate, characterize, and evaluate the antioxidant activity of A1 and A2 β-casein (β-CN) variants from milk of Siquijor native cattle (SN) and compare it to that of Holstein Friesian x Sahiwal (HF). Four milk samples from SN and three milk samples from HF, collected at 60-90 days during the first and second parities, were used in this study. Caseins were isolated from the milk samples by isoelectric precipitation at pH 4.5, urea denaturation, and SDS-PAGE. The fractions were quantified by Bradford assay. Antioxidant activity of the fractions was determined by DPPH scavenging assay. All the samples were analyzed using one-way ANOVA to determine the statistical difference. The concentrations of β-CN variants isolated from the milk of Siquijor native cattle and the milk of Holstein Friesian x Sahiwal were not significantly different (p>0.05). All of the casein samples exhibited DPPH scavenging activity with A2 β-CN exhibiting significantly higher scavenging activity (p<0.05). SN1 A2 β-CN exhibited the highest DPPH scavenging activity at 5.298% ± 0.17 among all of the samples. These results indicate that A2 β-CN may play a vital role in maintaining antioxidant homeostasis in the human body when the milk is consumed. These results also indicate the significance of A2 β-CN in extending the shelf-life of milk and other dairy products. In conclusion, this study successfully fractionated and characterized both A1 and A2 β-CN variants in the milk of Siquijor native cattle and Holstein Friesian x Sahiwal, with A2 β-CN having higher antioxidant activity compared to A1 β-CN.

References

Aoki, T., N. Yamada, & Y. Kako. 1988. Dissociation during dialysis of casein aggregates cross-linked by colloidal calcium phosphate in bovine casein micelles. J. Dairy Sci. 55:189-195. https://doi.org/10.1017/s0022029900026017
Atamer, Z., A. E. Post, T. Schubert, A. Holder, R. M. Boom, & J. Hinrichs. 2017. Bovine β-casein: Isolation, properties and functionality. A review. Int. Dairy. J. 66:115-125. https://doi.org/10.1016/j.idairyj.2016.11.010
Bijl, E., T. Huppertz, H. van Valenberg, & C. Holt. 2018. A quantitative model of the bovine casein micelle: ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk. Eur. Biophys. J. 48:45-59. https://doi.org/10.1007/s00249-018-1330-2
Boro, P., B. C. Naha, D. P. Saika, & C. Prakash. 2016. A1 and A2 milk and its impact on human health. Int. J. Sci. 7:1-5.
Castillo, C., V. Pereira, A. Abuelo, & J. Hernández. 2013. Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. 2013:1-8. https://doi.org/10.1155/2013/616098
Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto, & K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agri. Food Chem. 46:49–53. https://doi.org/10.1021/jf970649w
Dinesh, M., D. Sahoo, J. C. Thakor, H. S. Yadav, R. Manikandan, J. Keerthana, A. Muthukumar, R. Pradeep, & M. Sahoo. 2020. A1 and A2 Milk: Truth vs. Hype. A Magazine of Agriculture and Allied Sciences. 3:6-13.
Duarte-Vázquez, M. A., C. R. Garcia-Ugalde, B. E. Alvarez, L. M. Villegas, B. E. Garcia-Almendarez, J. L. Rosado, & C. Regalado. 2018. Use of urea-polyacrylamide electrophoresis for discrimination of A1 and A2 beta casein variants in raw cow’s milk. J. Food Sci. Technol. 55:1942-1947. https://doi.org/10.1007/s13197-018-3088-z
Givens, I., P. Aikman, T. Gibson, & R. Brown. 2013. Proportions of A1, A2, B and C β-casein protein variants in retail milk in the UK. Food Chem. 139:549–552. https://doi.org/10.1016/j.foodchem.2013.01.115
Gomez, K. A. & A. A. Gomez. 1984. Statistical Procedures for Agricultural Research. 2nd ed. John Wiley and Sons, New York.
Hamin Neto, Y. A. A., J. C. Rosa, & H. Cabral. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Prep. Biochem. Biotechnol. 49:639-648. https://doi.org/10.1080/10826068.2019.1566147   
Huppertz, T., I. Gazi, H. Luyten, H. Nieuwenhuijse, A. Alting, & E. Schokker. 2017. Hydration of casein micelles and caseinates: Implications for casein micelle structure. Int. Dairy J. 74:1-11. https://doi.org/10.1016/j.idairyj.2017.03.006
Jan, S. A., Z. K. Shinwari, M. A. Rabbani, S. H. Shah, M. I. Ibrahim, & M. Ilyas. 2016. Optimization of an efficient SDS-PAGE protocol for rapid protein analysis of Brassica rapa. J. Bio. Envi. Sci. 9:17-24.
Jawale, B., A. Kaluskar, J. Garde, & S. Sabonis. 2017. “The Reality of the White” A1 vs A2 Milk - A Critical Review. Int. J. Sci. Res. 6:1844-1846.
Kaskous, S. 2020. A1- and A2- milk and their effect on human health. J. Food Eng. Technol. 9:15-21. https://doi.org/10.32732/jfet.2020.9.1.15
Khan, I. T., M. Nadeem, M. Imran, R. Ullah, M. Ajmal, & M. H. Jaspal. 2019. Antioxidant properties of milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 18:41. https://doi.org/10.1186/s12944-019-0969-8
Kielkopf, C. L., W. Bauer, & I. L. Urbatsch. 2020. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 4:136-138. https://doi.org/10.1101/pdb.prot102269
Kirk, B., J. Mitchell, M. Jackson, F. Amirabdollahian, O. Alizadehkhaiyat, & T. Clifford. 2017. A2 milk enhances dynamic muscle function following repeated sprint exercise, a possible ergogenic aid for A1-protein intolerant athletes?. Nutrients. 9:1-14. https://doi.org/10.3390/nu9020094
Lucarini, M. 2017. Bioactive peptides in milk: From encrypted sequences to nutraceutical aspects. Beverages. 3:41. https://doi.org/10.3390/beverages3030041
Massella, E., S. Piva, F. Giacometti, G. Liuzzo, A. V. Zambrini, & A. Serriaino. 2017. Evaluation of bovine beta casein polymorphism in two dairy farms located in northern Italy. Ital. J. Food Saf. 6:6904. https://doi.org/10.4081/ijfs.2017.6904
O’Brien, K. T., C. Mooney, C. Lopez, G. Pollastri, & D. C. Shields. 2020. Prediction of polyproline II secondary structure propensity in proteins. R. Soc. Open Sci. 7:191239. https://doi.org/10.1098/rsos.191239
Petrat-Melin, B., P. Andersen, J. T. Rasmussen, N. A. Poulsen, L. B. Larsen, & J. F. Young. 2015. In vitro digestion of purified β-casein variants A1 and A2, B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity. J. Dairy Sci. 98:15-26. https://doi.org/10.3168/jds.2014-8330
Rival, S. G., C. G. Boeriu, & H. J. Wichers. 2001. caseins and casein hydrolysates. 2. antioxidative properties and relevance to lipoxygenase inhibition. J. Agri. Food Chem. 49:295-302. https://doi.org/10.1021/jf0003911  
Salmen, S. H., H. Abu-Tabrboush, A. A. Al-Saleh, & A. A. Metwalli. 2011. Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. Saudi J. Biol. Sci. 19:177-183. https://doi.org/10.1016/j.sjbs.2011.12.002
Shazly, A. B., Z. He, M. A. El-Aziz, M. Zeng, S. Zhang, F. Qin, & J. Chen. 2017. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem. 232: 753-762. https://doi.org/10.1016/j.foodchem.2017.04.071  
Silveira, D., A. M. M. F. de Melo, P. O. Magalhães, & Y. M. Fonseca-Bazzo. 2017. Tabernaemontana species: Promising sources of new useful drugs. Studies in Natural Products Chemistry. 54:227–289. https://doi.org/10.1016/B978-0-444-63929-5.00007-3
Thekkilaveedu, S., V. Krishnaswami, D. P. Mohanan, S. Alagarsamy, S. Natesan, & R. Kandasamy. 2019. Lactic acid‐mediated isolation of alpha‐, beta‐ and kappa‐casein fractions by isoelectric precipitation coupled with cold extraction from defatted cow milk. Int. J. Dairy Technol. 73:31-39. https://doi.org/10.1111/1471-0307.12646  
Whitney, R. M., J. R. Brunner, K. E. Ebner, H. M. Farrell Jr., R. V.Josephson, C. V. Morr, & H. E. Swaisgood. 1976. Nomenclature of the Proteins of Cow’s Milk: Fourth Revision. J. Dairy. Sci. 59:795-815. https://doi.org/10.3168/jds.s0022-0302(76)84280-4  
Xu, Y., D. Liu, H. Yang, J. Zhang, X. Liu, J. M. Regenstein, Y. Hemar, & P. Zhou. 2016. Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocoll. 60: 59-66. https://doi.org/10.1016/j.foodhyd.2016.03.026

Authors

G. T. A. Cuevas
gacuevas@up.edu.ph (Primary Contact)
A. A. Angeles
F. E. Merca
A. J. Salces
CuevasG. T. A., AngelesA. A., MercaF. E., & SalcesA. J. (2021). β-casein Variants and Anti-oxidant Profiles of Milk of Siquijor Native Cattle (Bos taurus indicus L.) as Compared to those of Holstein Friesian x Sahiwal Cattle. Tropical Animal Science Journal, 44(1), 108-114. https://doi.org/10.5398/tasj.2021.44.1.108

Article Details