Supplementation of Dietary Nano Zn-Phytogenic on Performance, Antioxidant Activity, and Population of Intestinal Pathogenic Bacteria in Broiler Chickens

  • C. Hidayat Indonesian Research Institute for Animal Production
  • Sumiati Sumiati Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • A. Jayanegara Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • E. Wina Indonesian Research Institute for Animal Production
Keywords: Nano Zn-Phytogenic, broiler chicken, performance, antioxidant, intestinal pathogenic bacteria

Abstract

Zinc is one of the essential minerals that are important for poultry. The disadvantage of Zn in the conventional form is its low bioavailability. One of the efforts to increase the bioavailability of Zn is to make it in a nano form. Nano Zn-Phytogenic (NZP), is a combination of Zn and phytogenic compounds of plants in nanoparticle size. The NZP was self-produced utilizing the green synthesis process of inorganic Zn and guava leave extract (Psidium guajava). The objective of this study was to evaluate the effects of supplementation NZP in diet on the performance, antioxidant status, and population of pathogenic intestinal bacteria (Escherichia coli and Salmonella sp) of broilers chicken. This study used 180 males and 180 females of Lohman broilers day old chick (DOC). The experiment was subjected to a completely randomized design with 6 (six) treatments and 5 (five) replications, and each experimental unit consisted of 12 DOCs (6 males and 6 females). The treatment given in this study were; R1= basal diet; R2= R1 + Zn Sulfate (90 mg Zn/kg) + 5.32 mg/kg guava leaf flour with 12.82% water content (added as a source of phytogenic compounds); R3= R1 + NZP (45 mg Zn/kg); R4= R1 + NZP (90 mg Zn/kg); R5= R1 + NZP (135 mg Zn/kg); R6= R1 + NZP (180 mg Zn/kg). The variables observed were performance, antioxidant activity in meat, and population of pathogenic intestinal bacteria (E. coli and Salmonella sp) of broiler chicken. The results showed that the addition of NZP up to a dose of 90 mg Zn/kg in the diet improved (p<0.05) body weight gain compared to the basal diet. The addition of NZP had no significant effect on the FCR. The addition of NZP increased (p<0.05) SOD activity in meat when compared with the dietary treatment without NZP. Groups of chicken fed NZP (R3, R4, R5, R6) had significantly (p<0.05) lower E. coli and Salmonella sp population. It could be concluded that the addition of NZP up to a dose of 90 mg Zn/kg in the diet of broiler chicken had positive benefits in improving performance, increasing antioxidant activity, and reducing pathogenic intestinal bacteria (E. coli and Salmonella sp).

Downloads

Download data is not yet available.

References

Ahmadi, F., Y. Ebrahimnezhad, N. M. Sis, & J. Ghiasi. 2013.The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci. 3:23-9. https://doi.org/10.12692/ijb/3.7.23-29

Arabi, F., M. Imandar, M. Negahdary, M. Imandar, M.T. Noughabi, & H. Akbari-Dastjerdi. 2012. Investigation antibacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res. 3:3679-3685.

Asheer, M., S. J. Manwar, M. A. Gole, S. Sirsat, M.R. Wade, K. K. Khose, & S. S. Ali. 2018. Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Indian. J. Poult. Sci. 53: 70-75. https://doi.org/10.5958/0974-8180.2018.00004.1

Balouiri, M., M. Sadiki, & S. A. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6:71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Bergin, I. L., & F. A. Witzmann. 2013. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 3: 1-2. https://doi.org/10.1504/IJBNN.2013.054515

Bintarti, T. 2014. Skrining fitokimia dan uji kemampuan sebagai antioksidan dari daun jambu biji (Psidium guajava. L). Jurnal Ilmiah PANNMED. 9: 40-44.

Biswas, B., K. Rogers, F. McLaughlin, D. Daniels, & A. Yadav. 2013. Antimicrobial activities of leaf extract of guava (Psidium guajava L) on two gram-negatif and gram-positiv bacteria. Int. J. Microbiol. 2013:1-7. Article ID 746165. https://doi.org/10.1155/2013/746165

Boverhof, D.R., C.M. Bramante, J.H. Butala, S.F. Clancy, M. Lafranconi, & J. West. 2015. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73:137-150. https://doi.org/10.1016/j.yrtph.2015.06.001

Chand, N., S. Naz, A. Khan, S. Khan, & R.U. Khan. 2014. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. Int. J. Biometeorol. 58:2153-2157. https://doi.org/10.1007/s00484-014-0815-7

Chand, N., S. Naz, H. Maris, R.U. Khan, S. Khan, & M.S. Qureshi. 2017. Effect of betaine supplementation on the performance and immune response of heat stressed broilers. Pakistan. J. Zool. 49:1857-1862. https://doi.org/10.17582/journal.pjz/2017.49.5.1857.1862

Chrpová, D., L. Kourimská, M.H. Gordon, V. Heřmanová, I. Roubičková, & J. Panek. 2010. Antioxidant activity of selected phenols and herbs used in diets for medical conditions. Czech. J. Food. Sci. 28:317-325. https://doi.org/10.17221/129/2010-CJFS

Dhama, K., S.K. Latheef, S. Manis, H.A. Samad, K. Kartik, R. Tiwari, R.U. Khan, M. Al-Agawany, M.R. Farag, G.M. Alam, V. Laudadio, & V. Tu Farelli. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production - A review. Int. J. Pharmacol. 11:152-176. https://doi.org/10.3923/ijp.2015.152.176

Esmaeillou, M., M. Moharamnejad, R. Hsankhani, A.A. Tehrani, & H. Maadi. 2013. Toxicity of ZnO nanoparticles in healthy adult mice. Environ. Toxicol. Pharmacol. 35: 67-71. https://doi.org/10.1016/j.etap.2012.11.003

Fathi, M., M. Hydari, & T. Tanha. 2016a. Effect of zinc oxide nanoparticles on antioxidant status, serum enzyme activities, biochemical parameters and performance in broiler chicken. J. Livest. 4:7-13.

Fathi, M. 2016b. Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iran J. Appl. Anim. Sci. 6:389-394.

Fukai, T. & M. U. Fukai. 2011. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox. Signal. 15: 1583-1606. https://doi.org/10.1089/ars.2011.3999

Hashemi, S.R. & H. Davoodi. 2011. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 35:169-180. https://doi.org/10.1007/s11259-010-9458-2

Hidayat, C., Sumiati, A. Jayanegara, & E. Wina. 2020. Effect of zinc on the immune response and production performance of broilers: a meta-analysis. Asian-Australas. J. Anim. Sci. 33:465-479. https://doi.org/10.5713/ajas.19.0146

Iovine, R.O., C. Dejuste, F. Miranda, C. Filoni, M. G. Bueno, & V. M. Carvalho. 2015. Isolation of Escherichia coli and Salmonella spp. from free-ranging wild animals. Brazilian. J. Microb. 46:1257-1263. https://doi.org/10.1590/S1517-838246420140843

Jeevanandam, J., A. Barhoum, Y.S. Chan, A. Dufresne, & M. K. Danquah. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein. J. Nanotechnol. 9: 1050-1074. https://doi.org/10.3762/bjnano.9.98

Jung, S., K. C. Nam, & C. Jo. 2016. Detection of malondialdehyde in processed meat products without interference from the ingredients. Food Chem. 209:90-94. https://doi.org/10.1016/j.foodchem.2016.04.035

Kemmett, K., N. J. Williams, G. Chaloner, S. Humphrey, P. Wigley, & T. Humphrey. 2014. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens. Avian Pathol. 43:1: 37-42. https://doi.org/10.1080/03079457.2013.866213

Lahir, Y. K. 2020. Interactions at interface between nanomaterial’s and biofilm: A general survey. Adv. Clin. Toxicol. 5:000192.

Laudadio, V., A. Dambrosio, G. Normanno, R.U. Khan, S. Naz, E. Rowghani, & V. Tufarelli. 2012. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian. Biology. Res. 5:88-92. https://doi.org/10.3184/175815512X13350180713553

Lee, M.T., W.C. Lin, B. Yu, & T.T. Lee. 2016. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review. Asian-Australas. J. Anim. Sci. 30:299-308. https://doi.org/10.5713/ajas.16.0438

Lee, S.R. 2018. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev. 2018:1-11. https://www.hindawi.com/journals/omcl/2018/9156285/. [15 August 2020]. https://doi.org/10.1155/2018/9156285

Lee, W.C., R. Mahmud, S. Pillai, S. Perumal, & S. Ismail. 2012. Antioxidant activities of essential oil of Psidium guajava L. Leaves. APCBEE Procedia. 2: 86 - 91. https://doi.org/10.1016/j.apcbee.2012.06.016

Lohman. 2009. Lohman Broiler Management Manual. http://www.incubatricipadovan.it/allegati/LOHMANN%202.pdf. [1 Juli 2020].

Lopes, S., F. Ribeiro, J. Wojnarowicz, & O. Witold. 2014. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ. Toxicol. Chem. 33: 190-198. https://doi.org/10.1002/etc.2413

Lu, X., Y. Liu, X. Kong, P.E. Lobie, C. Chen, & T. Zhu. 2013. Nanotoxicity: a growing need for study in the endocrine system. Small. 9:1654-1671. https://doi.org/10.1002/smll.201201517

Mahmoud, R.E., I. Doaa, & M.E. Badawi. 2013. Effect of supplementation of broiler diets with guava leaves and/or olive oil on growth, meat composition, blood metabolites and immune response. Benha. Vet. Med J. 25: 23‐32.

Marreiro, D. N., K. J. C. Cruz, J. B. S. Morais, J.B. Beserra, J. S. Severo, & A. R. S. de Oliveira. 2017. Zinc and oxidative stress: Current mechanisms. Antioxidants. 6 : 24. https://doi.org/10.3390/antiox6020024

Martin Jr, J.P., M. Dailey, & E. Sugarman. 1987. Negative and positive assays of superoxide dismutase based on haematoxylin auto-oxidation. Arch. Biochem. Biophys. 255:329-336. https://doi.org/10.1016/0003-9861(87)90400-0

Mohammadi, V., S. Ghazanfari, A. Mohammadi-Sangcheshmeh, & M.H. An Nazaran. 2015. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br. Poult. Sci. 56:486-493. https://doi.org/10.1080/00071668.2015.1064093

Mojzer, E.B., M.K. Hrncic, M. Škerget, Z. Knez, & U. Bren. 2016. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21:901. https://doi.org/10.3390/molecules21070901

Murugesan, G.R., B. Syed, S. Haldar, & C. Pender. 2015. Phytogenic feed additives as an alternative to antibiotic growth promoters in broiler chickens. Front. Vet. Sci. 2:1-6. https://doi.org/10.3389/fvets.2015.00037

Nirogi, R., V. K. Goyal, S. Jana, S.K. Pandey, & A. Gothi. 2014. What suits best for organ weight analysis: review of relationship between organ weight and body/brain weight for rodent toxicity studies. Int. J. Pharm. Sci. Res. 5: 1525-1532.

Pandey, A., & M. Shweta. 2011. Antifungal properties of Psidium guajava leaves and fruits against various pathogens. Pharmaceut. Biomed. Sci. J. 13: 6 pp.

Parashuramulu, S., D. Nagalakshmi, S.D. Rao, K.M. Kumar, & P.S. Swain. 2015. Effect of zinc supplementation on anti oxidant status and immune response in buffalo calves. Anim. Nutr. Feed Techn. 15:179-188. https://doi.org/10.5958/0974-181X.2015.00020.7

Perry, J.J.P., D.S. Shin, E.D. Getzoff, & J.A.Tainer. 2010. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta. 1804:245-262. https://doi.org/10.1016/j.bbapap.2009.11.004

Rajendran, R., C. Balakumar, A. Hasabo, M. Ahammed, S. Jayakumar, K. Vaideki, & E.M. Rajesh. 2010. Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol. 2:202-208. https://doi.org/10.4314/ijest.v2i1.59113

Rivai, H., L. Putriani, & Mahyuddin. 2010. Karakterisasi flavonoid antioksidan dari daun jambu biji (Psidium guajava L.). J. Farm. Higea. 2: 127-136.

Rostagno, H.S., L.F.T. Albino, M.I. Hannas, J.L. Donzele, N.K. Sakomuro, F.G. Perazzo, A. Saraiva, M.L.T. Abreu, P.B. Rodrigues, R.F. Oliveira, S.L.T. Barreto, & C.O. Brito. 2017. Brazilian tables for poultry and swine. Federal University of Viçosa-Department of Animal Science.

Saleh, A.A., B. Gálik, H. Arpášová, M. Capcarová, A. Kalafová, M. Šimko, M. Juráček, M.B. Rolinec, D. Bíro, & A.M.A. Abudabos. 2017. Synergistic effect of feeding Aspergillus awamori and lactic acid bacteria on performance, egg traits, egg yolk cholesterol and fatty acid profile in laying hens. Italian. J. Animl. Sci. 16: 132-139. https://doi.org/10.1080/1828051X.2016.1269300

Saleh, A.A., M.M. Ragab, E.A.M. Ahmed, A.M. Abudabos, & T.A. Ebeid. 2018. Effect of dietary zinc-methionine supplementation on growth performance, nutrient utilization, antioxidative properties and immune response in broiler chickens under high ambient temperature. J. Appl. Anim. Res. 46:820-827. https://doi.org/10.1080/09712119.2017.1407768

Salim, H.M., H.R. Lee, C. Jo, S.K. Lee, & B.D. Lee. 2011. Supplementation of graded levels of organic zinc in the diets of female broilers: effects on performance and carcass quality. Br. Poult. Sci. 52:606-612. https://doi.org/10.1080/00071668.2011.616485

Seil, J.T., & T. J. Webster. 2012. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine. 7: 2767-2781. https://doi.org/10.2147/IJN.S24805

Setyawati, M.I., C.Y. Tay, & D.T. Leong. 2015. Nanotoxicity: mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small. 11: 3458-3468. https://doi.org/10.1002/smll.201403232

Sharma, V., P. Singh, A.K. Pandey, & A. Dhawan. 2012. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 745: 84-91. https://doi.org/10.1016/j.mrgentox.2011.12.009

Siddiqi, K.S., A. Rahman, Tajuddin, A. Husen. 2018. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale. Ress. Lett. 13: 141. https://doi.org/10.1186/s11671-018-2532-3

Sinurat, A.P., E. Wina, S.I.W. Rakhmani, T. Wardhani, T. Haryati, & T. Purwadaria. 2018. Bioactive substances of some herbals and their effectiveness as antioxidant, antibacteria and antifungi. JITV. 23: 18-27. https://doi.org/10.14334/jitv.v23i1.1660

Slavin Y.N., J. Asnis , U. O. Häfeli, & H. Bach. 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15:65. https://doi.org/10.1186/s12951-017-0308-z

Souza R.C., U. Leticia, Haberbeck, G. Humberto, Riella, H.B. Deise, Ribeiro, & B. A. M. Carciof. 2019. Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazil J. Chem. Eng. 36:885 - 893. https://doi.org/10.1590/0104-6632.20190362s20180027

Stanacev, V., D. Glamocic, N. Milosevic, N. Puvaca, V. Stanacev, & N. Plavsa. 2011. Effect of garlic (Allium sativum L.) in fattening chicks nutrition. Afr. J. Agric. Res. 6: 943-948.

Starcevic, K., L. Krstulovic, D. Brozic, M. Mauric, Z. Stojevic, Z. Mikulec, M. Bajic, & T. Mašek. 2015. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food. Agric. 95:1172-1178. https://doi.org/10.1002/jsfa.6805

Swain, P.S., S.B.N. Rao, D. Rajendran, G. Dominic, S. Selvaraju. 2012. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2: 134-141. https://doi.org/10.1016/j.aninu.2016.06.003

Syafwani, S., R.P. Kwakkel, & M.W.A. Verstegen. 2011. Heat stress and feeding strategies in meattype chickens. World’s Poult. Sci. J. 67 : 653-674. https://doi.org/10.1017/S0043933911000742

Vinus & N. Sheoran. 2017. Role of nanotechnology in poultry nutrition. Int. J. Pure. App. Biosci. 5: 1237-1245. https://doi.org/10.18782/2320-7051.5948

Wahab, R., F. Khan, Y.K. Mishra, J. Musarrat, & A.A. Al-Khedhairy. 2016. Antibacterial studies and statistical design set data of quasi zinc oxide nanostructures. Rsc. Advances. 38:32328-32339. https://doi.org/10.1039/C6RA05297E

Xie Y., Y. He, P. L. Irwin, T. Jin, & X. Shi. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microb. 77:2325-2331. https://doi.org/10.1128/AEM.02149-10

Yan, G., Y. Huang, Q. Bu, L. Lv, P. Deng, & J. Zhou. 2012. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J. Environ. Sci. Health. 47:577-588. https://doi.org/10.1080/10934529.2012.650576

Yuan, J., Z. Xu, C. Huang, S. Zhou, & Y. Guo. 2011. Effect of dietary Mintrex-Zn/Mn on performance, gene expression of Zn transfer proteins, activities of Zn/Mn related enzymes and fecal mineral excretion in broiler chickens. Anim. Feed. Sci. Technol. 168:72-79. https://doi.org/10.1016/j.anifeedsci.2011.03.011

Zhang, F., Y. Li, M. Yang, W. Li. 2012. Content of heavy metals in animal feeds and manures from farms of different scales in northeast china. Int. J. Environ. Res. Piublic. Health. 9:2658-2668. https://doi.org/10.3390/ijerph9082658

Zhao, C.Y., S.X. Tan, X.Y. Xiao, X.S. Qiu, J.Q. Pan, & Z.X. Tang. 2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace. Elem. Res. 160:361-367. https://doi.org/10.1007/s12011-014-0052-2

Zhou, T.X., Z.F. Zhang, & I.H. Kim. 2013. Effects of dietary Coptis chinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. Asian-Australas. J. Anim. Sci. 26:108-115. https://doi.org/10.5713/ajas.2011.11400

Published
2021-03-09
How to Cite
Hidayat, C., Sumiati, S., Jayanegara, A., & Wina, E. (2021). Supplementation of Dietary Nano Zn-Phytogenic on Performance, Antioxidant Activity, and Population of Intestinal Pathogenic Bacteria in Broiler Chickens. Tropical Animal Science Journal, 44(1), 90-99. https://doi.org/10.5398/tasj.2021.44.1.90