Performance, Intestinal Histomorphology, and Blood Variables of Broilers Fed Amaranth Grain in Pellet Diet

  • A. H. Alizadeh-Ghamsari Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
  • S. A. Hosseini Animal Science Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO)
  • M. R. Soleymani Animal Science Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO)
  • R. Nahavandi Animal Science Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO)
Keywords: amaranth grain, broiler chickens, growth performance, histomorphology, biochemical blood variables


An experiment was conducted to evaluate the effects of amaranth grain in pellet diet on performance, intestinal morphology of jejunum, and selected blood variables of broilers. A total of 400 seven-day-old Ross 308 male broilers were allocated to 4 treatments with 5 replicates of 20 birds in a completely randomized design. Experimental treatments were included 4 levels of amaranth grain (0% (control), 2%, 4%, and 6%) in the isonitrogenous and isocaloric pellet diets. During the experiment, body weight (BW) and feed intake (FI) were recorded weekly and average daily gain (ADG), feed conversion ratio (FCR), as well as European broiler index (EBI), were calculated. On day 42, blood sera and jejunal tissue samples were obtained from 6 birds per replicate to evaluate morphological variables including villus height, villus width, and crypt depth, as well as selected blood variables. Although intestinal morphology and average daily feed intake (ADFI) were not influenced by experimental treatments, birds receiving 2% amaranth grain showed higher BW, ADG, and EBI compared to the other treatments (p<0.05). Chickens fed with diets including various levels of amaranth grain showed the decreased low-density lipoprotein (LDL) and cholesterol concentrations in the blood sera and reduced relative weight of abdominal fat compared to the control (p<0.05). Dietary addition of amaranth grain up to the level of 2% could improve the performance of broiler chickens, decreased blood cholesterol and LDL levels, and relative weight of abdominal fat which may have healthful effects on the birds and broiler-meat-consumers.


Download data is not yet available.


AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington, USA.

Aviagen. 2014. Ross 308: broiler nutrition specifications. [12 April 2016].

Beski, S. S. M., R. A. Swick, & P. A. Iji. 2015. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 1: 47-53.

Borelli, T., D. Hunter, S. Padulosi, N. Amaya, G. Meldrum, D. M. D. O. Beltrame, G. Samarasinghe, V. W. Wasike, B. Güner, A. Tan, Y. K. Dembele, G. Lochetti, A. Sidibe, & F. Tartanac. 2020. Local solutions for sustainable food systems: The contribution of orphan crops and wild edible species. Agronomy. 10: 231.

Caselato-Sousa, V. M., M. R. Ozaki, E. A. de Almeida, & J. Amaya-Farfan. 2014. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits. Food Func. 5: 3281-3286.

Chmelik, Z., M. Snejdrlova, & M. Vrablík. 2019. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr. Res. 72: 36-45.

Datar, S. P., D. S. Suryavanshi, & R. R. Bhonde. 2006. Chick pancreatic B islets as an alternative in vitro model for screening insulin secretagogues. Poult. Sci. 85: 2260-2264.

Duncan, D. B. 1955. Multiple range and multiple F-test. Biometrics. 11: 1-42.

Ebrahimi, E., R. S. Sobhani, & H. Zarghi. 2017. Effect of triticale level and exogenous enzyme in the grower diet on performance, gastrointestinal tract relative weight, jejunal morphology and blood lipids of Japanese quail (Coturnix coturnix Japonica). J. Agr. Sci. Tech. 19: 569-580.

Friedewald, W. T., R. I. Levy, & D. S. Fredrickson. 1972. Estimation of the concentration of LDL cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-504.

Gamel, T. H., J. P. Linssen, A. S. Mesallam, A. A. Damir, & L. A. Shekib. 2006. Seed treatments affect functional and antinutritional properties of amaranth flours. J. Sci. Food Agric. 86: 1095-102.

Gordon, T., & M. Amer. 1977. Cardiovascular disease marker. Am. J. Med. 62: 707-714.

Hein, H. T. M., N. C. Ha, L. T. Thom, & D. D. Hong. 2017. Squalene promotes cholesterol homeostasis in macrophage and hepatocyte cells via activation of liver X receptor (LXR) α and β. Biotechnol. Lett. 39: 1101-1107.

Ibrahim, N., S. Fairus, M. S. Zulfarina, & I. N. Mohamed. 2020. The efficacy of squalene in cardiovascular disease risk-a systematic review. Nutrients. 12: 414.

Kabuage, L.W., P.N. Mbugua, B. N. Mitaru, & T. A. Ngatia. 2002. Effect of steam pelleting and inclusion of molasses in amaranth diets on broiler chicken performance, carcass composition and histopathology of some internal organs. [15 February 2017].

Kotelevets, L., E. Chastre, J. Caron, J. Mougin, G. Bastian, A. Pineau, F. Walker, T. Lehy, D. Desmaele, & P. Couvreur. 2017. A squalene-based nanomedicine for oral treatment of colon cancer. Cancer Res. 77: 2964-2975.

Lado, M. B., J. Burini, G. Rinaldi, M. C. Anon, & V. A. Tironi. 2015. Effects of the dietary addition of amaranth (Amaranthus mantegazzianus) protein isolate on antioxidant status, lipid profiles and blood pressure of rats. Plant Foods Hum. Nutr. 70: 371-379.

Li, Y., A. Hruby, A. M. Bernstein, S. H. Ley, D. D. Wang, S. E. Chiuve, L. Sampson, K. M. Rexrode, E. B. Rimm, W. C. Willett, & F. B. Hu. 2015. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J. Am. Coll. Cardiol. 66: 1538-1548.

Longato, E., G. Meineri, P. G. Peiretti, & P. P. Mussa. 2015. Effects of diets containing linseed oil and supplemented with grain amaranth (Amaranthus caudatus) on growth performances, oxidative status and serum biochemical parameters in broilers. Ital. J. Anim. Sci. 14: 18 (Abtr.).

Lopez, D. N., Galante, M., Robson, M. Boeris, V., & D. Spelzini. 2018. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. Int. J. Biol. Macromol. 109: 152-159.

Marcu, A., I. Vacaru-Opriş, G. Dumitrescu, L. Petculescu Ciochină, A. Marcu, M. Nicula, I. Peţ, D. Dronca, B. Kelciov & C. Mariş. 2013. The influence of genetics on economic efficiency of broiler chickens growth. Anim. Sci. Biotechnol. 46: 339-346.

Martinez-Lopez, A., M. C. Millan-Linares, N. M. Rodriguez-Martin, F. Millan, & S. M. la Paz. 2020. Nutraceutical value of kiwicha (Amaranthus caudatus L.). J. Functional Food. 65: 103735.

Martinez-Nunez, M., M. Ruiz-Rivas, P. F. Vera-Hernandez, R. Bernal-Munoz, S. Luna-Suarez, & F. F. Rosas-Cardenas. 2019. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. S. Afr. J. Bot. 124: 436-443.

Molina, E., P. González-Redondo, R. Moreno-Rojas, K. Montero-Quintero, B. Bracho, & A. Sánchez-Urdaneta. 2015. Effects of diets with Amaranthus dubius Mart. ex Thell. on performance and digestibility of growing rabbits. World Rabbit Sci. 23: 9-18.

Mota, C., M. Santos, R. Mauro, N. Samman, A. S. Matos, D. Torres & I. Castanheira. 2014. Protein content and amino acids profile of pseudocereals. Food Chem. 15: 55-61.

Ndungu, Z. W., E. N. Kuria, N. K. Gikonyo, & D. K. Mbithe. 2017. Efficacy of amaranth grain consumption on CD4 count and morbidity patterns among adults living with HIV in Nyeri, Kenya. J. AIDS HIV Res. 9: 81-88.

Orczewska-Dudek, S., M. Pietras, & J. Nowak. 2018. The effect of amaranth seeds, sea buckthorn pomace and black chokeberry pomace in feed mixtures for broiler chickens on productive performance, carcass characteristics and selected indicators of meat quality. Ann. Anim. Sci. 18: 501-523.

Peiretti, P. G. 2018. Amaranth in animal nutrition: A review. Livest. Res. Rural Dev. 30: article ID 88.

Pisarikova, B., Z. Zraly, S. Kracmar, M. Trckova, & I. Herzig. 2006. The use of amaranth (genus Amaranthus L.) in the diets for broiler chickens. Veterinarni Medicina. 51: 399-407.

Ravindran, V., R. L. Hood, R. J. Gill, C. R. Kneale, & W. L. Bryden. 1996. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 63: 323-331.

Reyes, M. F., J. L. Chavez-Servin, C. Gonzalez-Coria, A. Mercado-Luna, K. T. Carbot, A. Aguilera-Barreyro, R. Ferriz-Martinez, J. Serrano-Arellano, & T. Garcia-Gasca. 2018. Comparative account of phenolics, antioxidant capacity, α-tocopherol and anti-nutritional factors of Amaranth (Amaranthus hypochondriacus) grown in the greenhouse and open field. Int. J Agric. Biol. 20: 2428-2436.

Rocha, C., J. F. Durau, L. N. E. Barrilli, F. Dahlke, P. Maiorka, & A. Maiorka. 2014. The effect of raw and roasted soybeans on intestinal health, diet digestibility and pancreas weight of broilers. J. Appl. Poult. Res. 23: 71-79.

Rouckova, J., M. Trckova, & I. Herzig. 2004. The use of amaranth grain in diets for broiler chickens and its effect on performance and selected biochemical indicators. Czech J. Anim. Sci. 49: 532-541.

Sakamoto, K., H. Hirose & A. Onizuka. 2000. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res. 94: 99-106.

Salvamani, S., B. Gunasekaran, M. Y. Shukor, N. A. Shaharuddin, M. K. Sabullah, & S. A. Ahmad. 2016. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evid. Based Complementary Altern. Med. Article ID: 8090841, 10 pages.

SAS. 2003. User’s guide: Statistics Version 9.1. Statistical Analysis Software Institute, Cary, North Carolina, USA.

Shevkani, K., N. Singh, J. Chand‐Rana, & A. Kaur. 2014. Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. Int. J. Food Sci. Tech. 49: 541-550.

Sing, A., R. K. Dubay, A. K. Bundela, & P. C. Abhilash. 2020. The trilogy of wild crops, traditional agronomic practices, and UN-sustainable development goals. Agronomy. 10: 648.

Siwatch, M., & R. B Yadav. 2017. Pseudocereals: Nutritional quality, processing and potential health benefits. Curr. Nutr. Food Sci. 13: 296-230.

Szczerbinska, D., B. Pyka, E. Szabelska, M. Ligocki, D. Majewska, K. Romaniszyn, & M. Sulik. 2015. The effect of diet with amaranth (Amaranthus cruentus) seeds on Japanese quail (Coturnix coturnix japonica) performance, somatic development, hatching results and selected blood biochemical parameters. Vet. Med. Zoot. 70: 67-72.

Tang, Y. & R. Tsao. 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory and potential health beneficial effects: a review. Mol. Nutr. Food Res. 61. Epub.

Thakur, P. & K. Kumar. 2019. Nutritional importance and processing aspects of Pseudo-cereals. J. Agric. Eng. Food Technol. 6: 155-160.

Venskutonis, P. R. & P. Kraujalis. 2013. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 12: 381-412.

Yaghobfar, A., A. Safamehr, & H. Ghaderi. 2014. Determination of nutritional values of Amaranthus grain on the broiler performance. Appl. Anim. Sci. Res. J. 3: 43-50. (In Persian).

How to Cite
Alizadeh-Ghamsari, A. H., Hosseini, S. A., Soleymani, M. R., & Nahavandi, R. (2021). Performance, Intestinal Histomorphology, and Blood Variables of Broilers Fed Amaranth Grain in Pellet Diet. Tropical Animal Science Journal, 44(1), 71-78.