Nutritional Evaluation of Sago of Gebang Tree (Corypha utan Lamk) from Different Locations in West Timor - Indonesia for Broilers

  • C. L. Nalle Department of Animal Husbandry, Kupang State Agriculture Polytechnic
  • Helda Helda Department of Animal Husbandry, Kupang State Agriculture Polytechnic
  • B. Masus Department of Animal Husbandry, Kupang State Agriculture Polytechnic
  • J. Malo Department of Animal Husbandry, Kupang State Agriculture Polytechnic
Keywords: AME, anti-nutrient, nutrient digestibility, performance, sago, synbiotics


Two experiments were conducted to evaluate the nutritional value of sago from different locations in West Timor, Indonesia for broilers. Experiment I aimed at determining the apparent metabolizable energy (AME) and nutrient digestibility of sago from different locations. A total of 120 broilers (unsexed, age 21 d) were randomly distributed to 24 metabolic cages (5 birds/cage). The experimental design was a completely randomized design (CRD) consisting of 6 treatments and 4 replications.  The experimental diets were a basal diet (maize-soy) and 5 treatment diets which were a mixture of basal ration (75%) and sago (25%) from different locations. Experiment II was about performance trials. Two different basal diets were formulated, supplemented with synbiotics and fed to 200 birds (unsexed, 10 birds/pen). The experimental design was a 2 x 2 factorial CRD. With the exception of phytate and phenol contents, the results showed that the location affected (p<0.05 to 0.01) the contents of dry matter, crude protein, and crude fiber, tannins, NDF, ADF, flavonoids, AME/n, and starch digestibility of sago. The location did not affect (p>0.05) ash, crude fat, starch, Ca, P, and gross energy contents of sago. Basal diets affected (p<0.05 to 0.001) all performance traits. Except for BWG, synbiotics did not affect (p>0.05) the performance of the birds. In conclusion, the nutrient composition and digestibility of sago are affected by locations. Sago is rich in starch and high in AME values, but poor sources of calcium, phosphor, and protein. Sago contains fiber, tannin, phytate, flavonoids, and phenol. Sago diets improved the performance of broilers. Synbiotics did not improve the performance of birds.


Download data is not yet available.


Abdel-Hafeez, H. M., E. S. E. Saleh, S. S. Tawfeek, I. M. I. Youssef, & A. S. A. Abdel-Daim. 2017. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australas. J. Anim. Sci. 30:672-682.

Ai, Y. & Jai-lin Jane. 2016. Macronutrients in corn and human nutrition. Comp. Rev. Food Sci. Food Safety. 15:581-598.

Alqaisi, O., O. S. Ndambi, & R. B. Williams. 2017. Time series livestock diet optimization: cost-effective broiler feed substitution using the commodity price spread approach. Agric. Econ. 5:25.

Amerah, A. M. 2015. Interaction between wheat characteristics and feed enzyme supplementation in broiler diets. Anim. Feed Sci. Tech. 199:1-9.

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Gaithersburg, MD.

Ayres, V. E., J. N. Broomhead, X. Li, R. M. Raab, & J. S. Moritz. 2019. Viscosity and growth response of broilers fed high fiber diets supplemented with a corn-produced recombinant carbohydrase. Appl. Poult. Res. 28:826-836

Azhar, R., S. P. Rose, A. M. Mackenzie, S. C. Mansbridge, M. R. Bedford, A. Lovegrove, & V. R. Pirgozliev. 2019. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. British Poult. Sci. 60:457-466.

Ball, M. E. E., B. Owens, & K. J. Mc Cracken. 2013. Chemical and Physical Predictors of the Nutritive Value of Wheat in Broiler Diets. Asian-Aust. J. Anim. Sci. 26: 97-107.

Bao, Y. M., L .F. Romero, & A. J. Cowieson. 2013. Functional patterns of exogenouos enzymes in different feed ingredients. World’s Poult. Sci. J. 69:759-774.

Bryden, W. L. & X Li. 2010. Amino acid digestibility and poultry feed formulation: expression, limitations and application. R. Bras. Zootec. 39:279-287.

Brugaletta, G., A. De Cesare, M. Zampiga, L. Laghi , C. Oliveri, C. Zhu, G. Manfreda , B. Syed , L. Valenzuela, & F. Sirri. 2020. Effects of alternative administration programs of a synbiotic supplement on broiler performance, foot pad dermatitis, caecal microbiota, and blood metabolites. Anim. 10:522.

Bulyaba, R., D. M. Winham, A. W. Lenssen, K. J. Moore, J. D. Kelly, M. A. Brick, E. M. Wright, & J. B. Ogg. 2020. Genotype by location effects on yield and seed nutrient composition of common bean. Agronomy. 10: 347.

Choct, M., R. J. Hughes, & G. Annison. 1999. Apparent metabolisable energy and chemical composition of Australian wheat in relation to environmental factors. Aust. J. Agric. Res. 50:447-451.

Cho, M., M. N. Smit, L. He, F. C. Kopmels, & E. Beltranena. 2019. Effect of feeding zero- or high-tannin Faba bean cultivars and dehulling on growth performance, carcass traits and yield of saleable cuts of broiler chickens. J. Appl. Poult. Res. 0:1-19.

Eagleton, G. E. 2016. Review: Persisten pioneers; Borasus L. and Corypa Malesia. Biodeversitas. 17:716-732.

Ferket, P. R. & A. G. Gemat. 2006. Factors that affect feed intake of meat birds: a review. Int. J. Poult. Sci. 5:905-911.

Gomez, K. A. & A. A. Gomez. 1984. Statistical Procedure for Agricultural Research. 2nd ed. John Wiley & Sons, New York.

Haug, W. & Hans-Joachim Lantzsch. 1983. Sensitive method for the rapid determination of phytate in cereals and cereals products. J. Sci. Food Agric. 34:1423-1426.

Helda, A.Y. Ninu, & C. L. Nalle. 2019. The supplementation effect of Probio FMplus as synbiotic in liquid and solid formson the broiler carcass quality. Eco. Env. & Cons. 25: S25-S30.

Hill, F. W. & D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603.

Karunaratne N. D., D. A. Abbott, P. J. Hucl, R. N. Chibbar, C. J. Pozniak, & H. L. Classen. 2018. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens. Poult. Sci. 97:2818-2828.

Kidd, M. T. & P. B. Tilman. 2016. Key principles concerning dietary amino acid responses in broilers. Anim. Feed Sci. Tech. 221:314-322.

Kim, D. O., S. W. Jeong & C. Y. Lee. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81:321-326.

Lee, J., D. S. Nam, & C. Kong. 2016. Variability in nutrient composition of cereal grains from different origin. Springer plus. 5:419.

Makkar, H. P. S. 2003. Quantification of Tannins in Tree And Shrub Foliage. A Laboratory Manual. Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Mateos, G. G., E. Jimenez-Moreno, M. P. Serrano, & R. P. Lazaro. 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 21 :156-174.

McDonald, P., R. A. Edwards. J. F. D. Greenhalgh, & C. A. Morgan. 2002. Animal Nutrition. 6th ed. Prentice Hall, United Kingdom.

Mtei, A. W., M. R. Abdollahi, N. Schreurs, C. K. Girish, and V. Ravindran. 2019. Dietary inclusion of fibrous ingredients and bird type influence apparent ileal digestibility of nutrients and energy utilization. Poult. Sci. 98:6702-6712.

Naiola, B. P. & N. Nurhidayaf. 2009. Biology of gewang (Corypha utan Lamarck) seeds: embryo content diversity, chemical content and the roles of microbes in seed germination. Berita Biologi. 9:773-781.

Nalle, C. L., V. Ravindran, & G. Ravindran. 2010. Nutritional value of faba beans (Vicia faba L.) for broilers: Apparent metabolisable energy, ileal amino acid digestibility and production performance. Anim. Feed Sci. Tech. 156:104-111.

Nalle, C. L., V. Ravindran, & G. Ravindran. 2011. Nutritional value of narrow-leafed Lupin (Lupinus angustifolius) for Broilers. British Poult. Sci. 52:775-81.

Nalle, C. L., V. Ravindran, & G. Ravindran. 2012. Nutritional value of white Lupins (Lupinus albus) for broilers: Apparent metabolisable energy, apparent ileal amino acid digestibility and production performance. Animal: an International Journal of Animal Bioscience 6:579-85. 10.1017/S1751731111001686

Nalle, C. L., M. R. K. Yowi, & D. R. Tulle. 2017. Nutritional value of putak: apparent metabolisable energy and growth performance. Int. J. Agr. Sys. 5:53-59.

Nalle, C. L., A. H. Angi, M. A. J. Supit, & S. Ambarwati. 2019a. Aflatoxin and Ochratoxin A contamination in maize grains and sago (putak meal) from different sources for poultry in West Timor, Indonesia. Int. J. Poult. Sci. 18:353-360.

Nalle, C. L. & M. R. K. Yowi. 2019b. Nutritional value of fermented rice bran for broiler chickens: apparent metabolisable energy and growth performance. Int. J. Poult. Sci. 18:618-625.

Olukosi, O. A., R. L. Walker, & J. G. M. Houdijk. 2019. Evaluation of the nutritive value of legume alternatives to soybean meal for broiler chickens. Poult. Sci. 98:5778-5788.

Ouyang K., M. Xu, Y. Jiang, & W. Wang. 2016. Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can. J. Anim. Sci. 96:331-340.

Pei-yao, L., W. Jing Wang, W. Shu-geng, G. Jun, D. Yan, Z. Hai-jun, & Q. Guang-Hai. 2020. Standardized ileal digestible amino acid and metabolizable energy content of wheat from different origins and the effect of exogenous xylanase on their determination in broilers. Poultry Sci. 99:992-1000.

Prasetyo, K.W., Subyanto, & B. P. Naiola. 2008. Physical and mechanical properties of gewang (Corypha utan Lamk) stem from East Nusa Tenggara. J. Trop. Wood. Sci. Tech. 6:1-6.

Raza, R., S. Bashir, & R. Tabassum. 2019. An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon. 5: e01437.

Ravindran, V., O. Adeola, M. Rodehutscord, H. Kluth, J. D. van der Klis, E. van Eerden, & A. Helmbrecht. 2017. Determination of ileal digestibility of amino acids in raw materials for broiler chickens - Results of collaborative studies and assay recommendations. Anim. Feed Sci. Tech. 225:62-72.

Rohollah, E., J. B. Liang, M. F. Jahromi, P. Shokryazdan, M. Ebrahimi, W. Li Chen, & Y. M. Goh. 2015. Effects of tannic acid on performance and fatty acid composition of breast muscle in broiler chickens under heat stress. Italian J. Anim. Sci. 14:4.

SAS Institute. SAS/STAT® User’s Guide: Statistics. (University Edition). SAS Institute Inc., Cary, NC, USA.

Sharif, S. D., F. Shariatmadari, & A. R. Yaghobfar. 2012. Effects of inclusion of hull-less barley and enzyme supplementation on broiler diets on growth performance, nutrient digestion and dietary metabolizable energy content. J. Cent. Europ. Agr. 13:193-207.

Slominsky, B. A. 2011. Recent advances in research on enzymes for poultry diets. Poultry Science 90 :2013-2023. 10.3382/ps.2011-01372

Smeets, N., F. Nuyens, L. Van Campenhout, E. Delezie, J. Pannecoucque, & T. Niewold. 2015. Relationship between wheat characteristics and nutrient digestibility in broilers: comparison between total collection and marker (titanium dioxide) technique. Poult Sci. 94:1584-91.

Smeets, N., F. Nuyens, L. Van Campenhout, E. Delezie, & T. A. Niewold. 2018. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Pout. Sci. 97:2064-2070.

Spring, P. 2013. The challenge of cost effective poultry and animal nutrition: Optimizing existing and applying novel concepts. Lohmann Info. Vol. 48:38.

Indonesian National Standard (SNI-01-2891). 1992. How to test food and beverages. Indonesian National Standard Agency. pp. 18-20. [Indonesian].

Svihus, B. 2014. Starch digestion capacity of poultry. Poult. Sci. 93:2394-2399.

Swain, B. K., P. K. Naik, & N. P. Singh. 2014. Unconventional feed resources for efficient poultry production. Tech. Bulletin. No. 47.

Tahir, M., A. B. Batal, & G. M. Pesti. 2015. Broiler response model to estimate the economic importance of dietary feed enzymes. J. Appl. Poult. Res. 24:37-48.

Tomaszewska, E., S. Muszyński, P. Dobrowolski, M. Kwiecień , R. Klebaniuk, S. Szymańczyk, A. Tomczyk, S. Kowalik, A. Milczarek, & I. Świetlicka. 2015. The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and metabolic response in broiler chickens. Ann. Anim. Sci. 18: 801-824.

Truong H. H., K. A. Neilson , B. V. McInerney, A. Khoddami , T. H. Roberts, S. Y. Liu, & P. H. Selle. 2015. Performance of broiler chickens offered nutritionally-equivalent diets based on two red grain sorghums with quantified kafirin concentrations as intact pellets or re-ground mash following steam-pelleting at 65 or 97°C conditioning temperatures. Anim. Nut. 1:220-228.

Wealleans A. L., W. Li, L. F. Romero, G. Mathis, & B. Lumpkins. 2017. Performance and cost-benefit improvements following supplementation with a combination of direct-fed microbials and enzymes to broiler chickens raised with or without ionophores. J. Appl. Poult. Res. 27:23-32.

Woyengo, T. A. & C. M. Nyachoti. 2013. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry-current knowledge and directions for future research. Can. J. Anim. Sci. 93:9-21.

Yacout, M. H. M. 2015. Anti-nutritional factors & its roles in animal nutrition. J. Dairy Vet. Anim. Res. 4:237-239.

Yaghobfar, A. & Kalantar, M. 2017. Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Brazilian J. Poult. Sci. 19:629-638.

How to Cite
Nalle, C. L., Helda, H., Masus, B., & Malo, J. (2021). Nutritional Evaluation of Sago of Gebang Tree (Corypha utan Lamk) from Different Locations in West Timor - Indonesia for Broilers. Tropical Animal Science Journal, 44(1), 48-61.