Yield Grade and Quality Assessment of Native Buffalo Meat and Beef at Different Ages

B. K. Roy, N. Huda, K. S. Huque, N. Sultana, N. R. Sarker

Abstract

Boosting meat production potential possibly happens when people will judge meat quality and use their livestock wisely, as they meet up their demand from promising animal like buffalo. To evaluate the productive performances and quality assessments of beef and buffalo meats, cattle (Pabna) and buffalo (Native, swamp type) were fattened for 120 days with a single plane of nutrition in a 2×3 (Species×Age) factorial experiment. By slaughtering, the carcass and non-carcass characteristics, primal cuts, pH, drip loss, cooking loss, color, intramuscular fat of meat, marbling score, and yield grade of meat were determined through univariate GLM procedure based CRD analysis. Live and carcass weights of buffalo were significantly higher (p<0.001), but the dressing percentage was significantly lower (p<0.001) than cattle (52.1% & 55.3%, respectively). Species variation and age have a great impact on the yield of primal cuts. Meat: bone of cattle (5.33:1.00) was significantly better (p<0.001) than buffalo (4.57:1.00). Buffalo meat was darker and reddish (p<0.01) in color, and with the increment of age, it was increased (p<0.001). A little amount (p<0.001) of intramuscular fat was found in buffalo meat (0.44%) than cattle (3.31%). The marbling score was measured higher (p<0.001) in cattle than buffalo (5.00 and 3.85, respectively). Buffalo meat scored 3 in 5 scale yield grade point where beef gained 3.5 scores and showed a significant (p<0.05) difference. Finally, buffalo meat scored better than beef with the measures of yield grade, marbling score, and fat percentage, though its lower carcass yield and demerits of a reddish color.

References

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.
Barton, L. D., V. Řehák, D. Teslík, R. Bureš, & Zahrádková. 2006. Effect of breed on growth performance and carcass composition of Aberdeen Angus, Charolais, Hereford, and Simmental bulls. Czech J. Anim. Sci. 51: 47-53. https://doi.org/10.17221/3908-CJAS
Burson, D. E. 2005. Quality and Yield Grades for Beef Carcasses. North Central Regional Extension Publication #357. University of Nebraska, Lincoln.
Cheng, W., J. Cheng, D. Sun, & H. Pu. 2015. Marbling analysis for evaluating meat quality: Methods and techniques. Compr. Rev. Food Sci. Food Saf. 14: 523-535. https://doi.org/10.1111/1541-4337.12149
Cox-O’Neill, J. L., K. E. Hales, K. M. Ulmer, R. J. Rasby, J. Parsons, S. D. Shackelford, H. C. Freetly, & M. E. Drewnoski. 2017. The effects of back grounding system on growing and finishing performance and carcass characteristics of beef steers. J. Anim. Sci. 95: 5309-5319. https://doi.org/10.2527/jas2017.1934
Fatema, M. K. 2014. Statistical Yearbook of Bangladesh. 34th ed. Bangladesh Bureau of Statistics (BBS), Publication Section, Dhaka, Bangladesh.
Gotoh, T., T. Nishimura, K. Kuchida, & H. Mannen. 2018. The Japanese wagyu beef industry: current situation and future prospects - A review. Asian Aust. J. Anim. Sci. 31: 933-950. https://doi.org/10.5713/ajas.18.0333
Hale, D. S., K. Goodson, & J. W. Savell. 2013. USDA Beef Quality and Yield Grade. Texas A & M AgriLife Extension Service. College Station, TX 77843-2471.
Hamid, M. A., S. Ahmed, M. A. Rahman, & K. M. Hossain. 2016. Status of buffalo production in Bangladesh compared to SAARC countries. Asian J. Anim. Sci. 10: 313-329. https://doi.org/10.3923/ajas.2016.313.329
Huerta-Leidenz, N., A. Rodas-González, A. Vidal, J. Lopez-Nuñez, & O. Colina. 2015. Carcass cut-out value and eating quality of longissimus muscle from serially harvested savannah-raised Brahman-influenced cattle and water buffaloes in Venezuela. Anim. Prod. Sci. 56: 2093-2104. https://doi.org/10.1071/AN14987
Huque, Q. M. E. & A. Borghese. 2013. Status and perspectives of buffalo in Bangladesh. Buffalo Bull. 32: 1179-1183.
Irurueta, M., A. Cadoppi, L. Langman, G. Grigioni, & F. Carduza. 2008. Effect of aging on the characteristics of meat from water buffalo grown in the Delta del Paraná region of Argentina. Meat Sci. 79: 529-533. https://doi.org/10.1016/j.meatsci.2007.12.010
Kandeepan, G. & S. Biswas. 2007. Effect of low temperature preservation on quality and shelf life of buffalo meat. Am. J. Food Technol. 2: 126-135. https://doi.org/10.3923/ajft.2007.126.135
Kandeepan, G., S. Biswas, & R. S. Rajkumar. 2009a. Buffalo as a potential food animal. Int. J. Livest. Prod. 1: 1-5.
Kandeepan, G., A. S. R. Anjaneyulu, N. Kondaiah, S. K. Mendiratta, & V. Lakshmanan. 2009b. Effect of age and gender on the processing characteristics of buffalo meat. Meat Sci. 83: 10-14. https://doi.org/10.1016/j.meatsci.2009.03.003
Lambertz, C., P. Panprasert, W. Holtz, E. Moors, S. Jaturasitha, M. Wicke, & M. Gauly. 2014. Carcass characteristics and meat quality of swamp buffaloes (Bubalus bubalis) fattened at different feeding intensities. Asian Aust. J. Anim. Sci. 27: 551-560. https://doi.org/10.5713/ajas.2013.13555
Lee, B. & Y. M. Choi. 2019. Correlation of marbling characteristics with meat quality and histochemical characteristics in longissimus thoracis muscle from Hanwoo steers. Food Sci. Anim. Resour. 39: 151-161. https://doi.org/10.5851/kosfa.2019.e12
Lee, Y., B. Lee, H. K. Kim, Y. K. Yun, S. J. Kang, K. T. Kim, B. D. Kim, E. J. Kim, & Y. M. Choi. 2018. Sensory quality characteristics with different beef quality grades and surface texture features assessed by dented area and firmness, and the relation to muscle fiber and bundle characteristics. Meat Sci. 145: 195-201. https://doi.org/10.1016/j.meatsci.2018.06.034
Lin-qiang. L. I., T. I. A. N. Wan-qiang, & Z. A. N. Lin-sen. 2011. Effects of age on quality of beef from Qinchuan cattle carcass. Agric. Sci. China. 10: 1765-1771. https://doi.org/10.1016/S1671-2927(11)60176-4
Mello, J. L. M., A. B. B. Rodrigues, A. Giampietro-Ganeco, F. B. Ferrari, R. A. Souza, P. A. Souza, H. Borba. 2017. Characteristics of carcasses and meat from feedlot-finished buffalo and Bos indicus (Nellore) bulls. Anim. Prod. Sci. 58: 1366-1374. https://doi.org/10.1071/AN16556
Mir, P. S., Z. Mir, P. S. Kuber, C. T. Gaskins, E. L. Martin, M. V. Dodson, J. A. Calles, K. A. Johnson, J. R. Bubsoom, A. J. Wood, G. J. Pittenger, & J. J. Reeves. 2002. Growth, carcass characteristics, muscle conjugated linoleic acid (CLA) content and response to intravenous glucose challenge in high percentage Wagyu, Wagyu × Limousin and Limousin steers fed sunflower oil containing diets. J. Anim. Sci. 80: 2996-3004. https://doi.org/10.2527/2002.80112996x
Nam, Y. J., Y. M. Choi, S. H. Lee, J. H. Choe, D. W. Jeong, Y. Y. Kim, & B. C. Kim. 2009. Sensory evaluations of porcine longissimus dorsi muscle: Relationships with postmortem meat quality traits and muscle fiber characteristics. Meat Sci. 83: 731-736. https://doi.org/10.1016/j.meatsci.2009.08.015
Naveena, B. M., M. Kiran, K. S. Reddy, C. Ramakrishna, S. Vaithiyanathan, & S. K. Devatkal. 2011. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat. Meat Sci. 88: 727-732. https://doi.org/10.1016/j.meatsci.2011.03.005
Plessis, I. & L. C. Hoffman. 2007. Effect of slaughter age and breed on the carcass traits and meat quality of beef steers finished on natural pastures in the arid subtropics of South Africa. S. Afr. J. Anim. Sci. 37: 143-153. https://doi.org/10.4314/sajas.v37i3.4084
Priyanto, R., H. Nuraini, Muladno, M. Ismail, & H. Wijayanto. 2019. Slaughter, carcass and non-carcass characteristics of local cattle and buffalo in Indonesia. Pak. J. Nutr. 18: 117-124. https://doi.org/10.3923/pjn.2019.117.124
Rahman, M. N. 2012. Statistical Yearbook of Bangladesh, 32nd ed. Reproduction Documentation and Publication, Bangladesh Bureau of Statistics (BBS), Dhaka, Bangladesh.
Ranjan, S. K. 2004. Commercial production of buffalo meat with social agenda. Proceedings of 7th World Buffalo Congress, Makat, Phillipines. pp. 1-7.
Ranjhan, S. K. 2014. Indian buffalo meat industry vis-à-vis international trade. In the 6th Conference of Indian Meat Science Association and National Symposium on Sustainable Meat Production for Nutritional Security and Consumer Well-being: Challenges and Strategies, DUVASU, Mathura, India.
Schonfeldt, H. C. & P. E. Strydom. 2011. Effect of age and cut on cooking loss, juiciness and flavour of South African beef. Meat Sci. 87: 180-190. https://doi.org/10.1016/j.meatsci.2010.10.007
Serra, X., L. Guerrero, M. D. Gua’rdia, M. Gil, C. San˜udo, B. Panea, M. M. Campo, J. L. Olleta, M. D. Garcı’a-Cacha’n, J. Piedrafita, & M. A. Oliver. 2008. Eating quality of young bulls from three Spanish beef breed-production systems and its relationships with chemical and instrumental meat quality. Meat Sci. 79: 98-104. https://doi.org/10.1016/j.meatsci.2007.08.005
Singh, P. K., S. S. Ahlawat, D. P. Sharma, & A. Pathera. 2018. Carcass characteristics of male buffalo calf and meat quality of its veal. Buffalo Bull. 37: 129-144.
Steel, R. G. & J. E. Torrie. 1980. Principles and Procedures of Statistics. McGraw Hill Book, New York.
Tahuk, P. K., S. P. S. Budhi, Panjono, & E. Baliarti. 2018. Carcass and meat characteristics of male Bali cattle in Indonesian smallholder farms fed ration with different protein levels. Trop. Anim. Sci. J. 41: 215-223. https://doi.org/10.5398/tasj.2018.41.3.215
Van Soest, P. J., J. B. Roberson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Węglarz, A. 2010. Meat quality defined based on pH and color depending on cattle category and slaughter season. Czech J. Anim. Sci. 55: 548-556. https://doi.org/10.17221/2520-CJAS

Authors

B. K. Roy
N. Huda
hudanazmul1971@gmail.com (Primary Contact)
K. S. Huque
N. Sultana
N. R. Sarker
RoyB. K., HudaN., HuqueK. S., SultanaN., & SarkerN. R. (2020). Yield Grade and Quality Assessment of Native Buffalo Meat and Beef at Different Ages. Tropical Animal Science Journal, 43(4), 360-368. https://doi.org/10.5398/tasj.2020.43.4.360

Article Details

List of Cited By :

Crossref logo