Nutritional Qualities of Cocoa Pod Husk Treated with Bioconversion and or Provision of Nitrogen Sources in the Rumen

  • Syahrir Syahrir Faculty of Animal Science and Fishery, Tadulako University
  • Hartutik Hartutik Faculty of Animal Science, Brawijaya University
  • Kusmartono Kusmartono Faculty of Animal Science, Brawijaya University
  • Damry Damry Faculty of Animal Science and Fishery, Tadulako University
Keywords: biological treatment, cocoa pod husk, digestibility, fermentation, white rot fungi


The objective of this study was to investigate the effects of bioconversion using Phanerochaete chrysosporium and Pleurotus ostreatus and or inclusion of Moringa oleifera leaves and urea in the rumen on cocoa pod husk digestibility and fermentation in the rumen. There were 4 treatments tested: (1) 100% untreated cocoa pod husk (UCPH), (2) 55% UCPH + 43.7% M. oleifera + 1.30% urea (UCPHMU), (3) 100% bioconverted cocoa pod husk (BCPH), and (4) 55% BCPH + 44.5 M. oleifera + 0.5% urea (BCPHMU). Each of the treatments was replicated three times. Variables observed were dry matter and organic matter digestibilities and degradabilities, rumen VFA and ammonia concentrations, gas production, and calculated microbial biomass yields. Results indicated that the treatment increased dry matter (P<0.001) and organic matter (P<0.01) digestibility, with the highest for the BCPHMU and the lowest for the UCPH. The treatments also increased dry matter and organic matter degradability in the rumen (P<0.001), with the highest for the BCPHMU, followed by the UCPHMU, and then by the BCPH and the lowest was UCPH. The treatment affected rumen ammonia concentration (P=0.01), the highest value was found for the BCPHMU followed with UCPHMU and BCPH. Microbial biomass synthesis was affected (P<0.001) by the treatment and it was always higher when nitrogen was provided (UCPHMU and BCPHMU). Total VFA concentration or total gas production was higher for BCPHMU compared to other treatments. It can be concluded that nutritional quality of cocoa pod husk can be improved by either bioconversion with P. chrysosporium and P. ostreatus or inclusion of M. oleifera and urea in the rumen, but the best improvement can be obtained by the combination of bioconversion and provision of the nitrogen sources in the rumen.


Download data is not yet available.


Adegun, M.K., P.A. Aye, & F.A.S. Dairo. 2011. Evaluation of Moringa oleifera, Gliricidia sepium and Leucaena leucocephala-based multi nutrient blocks as feed supplements for sheep in South Western Nigeria. Agric. Biol. J. North Am. 2: 1395–1401.

Akinlade, A.T. & T.O. Ososanya. 2016. Nutrient utilization, ruminal mircobial population and fermentation characteristics of West African Dwarf (WAD) rams fed ammonium sulphate fortified diets. J. Anim. Prod. Res. 28: 309-317.

Allen, S.A. & E.L. Miller. 1976. Determination of nitrogen for microbial growth from the effect of urea supplementation of a low N diet on abomasal N flow and N recycling in wethers and lambs. Br J Nutr 36: 353-368.

Asaolu, V., R. Binuomote, J. Akinlade, O. Aderinola, & O. Oyelami. 2012. Intake and growth performance of West African dwarf goats fed Moringa oleifera, Gliricidia sepium and Leucaena leucocephala dried leaves as supplements to cassava peels. J. Biol. Agric. Healthc. 2: 76–88.

Babeker, E.A. & Y.M. Abdalbagi. 2015. Effect of feeding different levels of Moringa oleifera leaves on performance, haematological, biochemical and some physiological parameters of Sudan Nubian goats. Online J. Anim. Feed Res 5: 50–61.

Babiker, E.E., F.A.L. Juhaemi, K. Ghafoor, & K.A Abdoun. 2017. Comparative study on feeding value of Moringa leaves as a partial replacement for alfalfa hay in ewes and goats. Livest Sci 195: 21-26.

Bachruddin, Z. 1996. Pengukuran pH dan Asam Lemak Terbang (Vollatile Fatty Acid – VFA) Cairan Rumen dengan Gas Khromatografi (Kursus Singkat Teknik Evaluasi Pakan Ruminansia). Fakultas Peternakan UGM, Yogyakarta.

Blummel M., H. Steinglass, & K. Becker. 1997. The relationship between in-vitro gas production, in-vitro microbial biomass yield and 15N incorporation and its implications for prediction of voluntary feed intake of roughages. Br J Nutr 72: 911-921.

Cruz G., M. Pirilä, H. Huuhtanen, L. Carrión, E. Alvarenga, & R. L. Keiski. 2012. Production of activated carbon from cocoa (Theobroma cacao) pod husk. J Civil Environment Engg 2: 1-6. 2012, 2:2

Daud, Z., A.S.M. Kassim, A.M. Aripin, H. Awang, & M.Z.M Hatta. 2013. Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production. Aust. J. Basic Appl. Sci. 7: 406-411

Directorate General of Estate Crops (DGEC). 2015. Tree Crops Estate of Indonesia (2014-2016). Indonesian Ministry of Agriculture, Jakarta.

General Laboratory Procedure. 1966. Department of Dairy Science. University of Wisconsin. Madison, USA.

Hume, I. D., R. J. Moir, & M. Somers. 1970. Synthesis of microbial protein in the rumen. 1. Influence of the level of nitrogen intake. Aust J Agric Res 21: 283-296.

Kholif, A.E., G.A. Gouda, T.A. Morsy, A.Z.M. Salem, S. Lopez, & A.M. Kholif. 2015. Moringa oleifera leaf meal as a protein source in lactating goat’s diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rum Res 129: 129-137.

Laconi, E. B. & A. Jayanegara. 2015. Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: in-vitro and in-vivo evaluation. Asian-Australas. J. Anim. Sci. 28: 343–350.

Makkar, H.P.S. & K. Becker. 1997. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci. 128: 311-22.

Makkar, H. P. S., M. Blümmel, & K. Becker. 1995. Formation of complexes between poly vinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in-vitro techniques. Br. J. Nutr. 73: 897-913.

McSweeney, C.S & S.E. Denman. 2007. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J. Appl. Microbiol. 103: 1757-1763.

Mendieta-Araica, B., R. Sporndly, N.R. Sanchez, & E. Sporndly. 2011. Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas. Livest. Sci. 137: 10–17.

Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, & W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor. J Agric Sci 93: 217-222.

Ørskov, E. R. & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci 92: 499-503.

Preston, T. R. & R. A. Leng. 1987. Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-Tropics. Penambul Books, Armidale.

Puastuti, W. & I.W.R. Susana. 2014. Potency and utilization of cocoa pod husk as an alternative feed for ruminants. Wartazoa 24: 151-159.

Saili, T, Marsetyo, D.P. Poppi, P. Isherwood, L. Nafiu, & S.P. Quigley. 2010. Effect of treatment of cocoa-pods with Aspergillus niger on liveweight gain and cocoa-pod intake of Bali (Bos sondaicus) cattle in South-East Sulawesi. Ani. Prod. Sci. 50: 693-698.

Suparjo, K. G. Wiryawan, E. B. Laconi, & D. Mangunwidjaja. 2011. Performa kambing yang diberi kulit buah kakao terfermentasi. Med Pet 34: 35-41.

Satter, L. D. & L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in-vitro. Br. J. Nutr. 32:199-208.

Soliva, C.R., M. Kreuzer, N. Foidl, G. Foidl, A.Machmüller, & H.D.Hess. 2005. Feeding value of whole and extracted Moringa oleifera leaves for ruminants and their effects on ruminal fermentation in-vitro. J. Ani. Feed Sci. Tech. 118: 47-62.

Steel, R.G.D. & J.H. Torrie. 1991. Prinsip dan prosedur statistik, suatu pendekatan biometrik. terjemahan. judul asli : Principles and procedures of statistic, a biometrical approach. Penerjemah : Bambang Sumantri. Gramedia Pustaka Utama, Jakarta.

Sultana, N., A. R. Alimon, K.S. Huque, A.Q. Sazili, H. Yaakub, J. Hossain, & M. Baba. 2015. The feeding value of moringa (Moringa oleifera) foliage as replacement to conventional concentrate diet in Bengal goats. Adv. Anim. Vet. Sci. 3: 164–173.

Syahrir, Hartutik, Kusmartono, & Damry. 2013. Effects of cocoa pod husk bioconversion with Phanerochaete chrysosporium and or Pleurotus ostreatus on its nutrient content and in-vitro digestibility in ruminants. Livestock Research for Rural Development. Volume 25, Article #122. Retrieved July 17, 2017, from

Syarifuddin, N.A., A. L. Toleng, D. P. Rahardja, I. Ismartoyo, & M. Yusuf. 2017. Improving libido and sperm quality of Bali bulls by supplementation of Moringa oleifera leaves. Med Pet 40: 88-93.

Tilley, J. M. A. & R.A. Terry. 1963. A two stage technique for in-vitro digestion of forage crop. J. Br. Grassl. Soc. 18: 104-114.

van Der Meer, J. M. 1980. Determination of the in-vitro digestibility for the prediction of the in-vivo organic matter digestibility coefficient of feeds for ruminants. Documentation Report No. 67. IVVO, Lelystad.

van Kuijk, S.J.A., A.S.M. Sonnenberg, J.J.P. Baars, W.H. Hendriks, & J.W. Cone. 2014. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnol Adv 33: 191-202.

Witjaksono, J. & Asmin. 2016. Cocoa farming system in Indonesia and its sustainability under climate change. Agriculture, Forestry and Fisheries 5: 170-180.

Yakin, E.A., Z. Bachruddin, R. Utomo, & R. Millati. 2016. Effect of white rot fungi to enzimatic activity and lignin on fermentation process of cocoa pod. J. Biol. Agric. Healthc. 6: 47-50.

Yakin, E.A., Z. Bachruddin, R. Utomo, & R. Millati. 2017. Effect of lignocellulolytic fungus on enzimatic activity, fiber fraction, and digestibility on fermentation process of cocoa pod. Bull Ani Sci 41: 250-256.