THE INFLUENCE OF URBANIZATION ON TRADITIONAL FOOD PLANT KNOWLEDGE AND TRADITIONAL CUISINE OF GAYO-LUT COMMUNITY

IVANA JOY PAULINE PANGARIBUAN¹), SYAFITRI HIDAYATI^{2)*}, AND ARZYANA SUNKAR²)

¹⁾ Tropical Biodiversity Conservation, Faculty of Forestry and Environment, IPB University, Babakan, Dramaga, Bogor, West Java, 16680, Indonesia.

²⁾ Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Bogor, West Java, 16680, Indonesia

*Email: <u>123 ivana@apps.ipb.ac.id</u>

Accepted March 23, 2023 / Approved May 26, 2023

ABSTRACT

Traditional knowledge explains the sustainable use and management of natural resources that are critical for the long-term of ecosystems and food security one of the challenges in maintaining traditional knowledge is urbanization. This study aims to identify the diversity of food plants used by the Gayo Lut community and describe the effect of urbanization on changes in traditional knowledge. Data collection methods include freelisting and field observation. This research involved 3 groups of 16 elders, 16 non-urban, and 16 Urban. The respondents were asked to freelist by mentioning 25 of Gayo Lut traditional common food plants and interviews related to food terminology, including the food plants used. Data were analyzed with Salience Index using Anthropac, and Jaccard index to see the similarity knowledge. This study found a total 188 of food plants and 224 dishes. The effect of urbanization on food plants knowledge is significantly seen for urban community. In contrast to cuisine knowledge, urban people tend to have more knowledge, and modified recipes as a form of adaptation but still maintained distinctive flavors. This study also reveals that there is a close relationship between traditional cuisine and food plants, which can be an alternative for food plant conservation.

Key words: food plant, Gayo Lut, salience index, traditional cuisine, traditional knowledge

INTRODUCTION

The wealth of natural resources can be utilized to support food security through the production of food, increase income access, and safe-sanitary food preparation (Richardson 2010). In many cases, plants are one of the most essential sources of humanity's ancient dietary needs (Kunwar dan Bussmann 2008; Shaheen et al. 2012) and have become rooted in the culture of the community. This is known as a traditional food plant (<u>Maundu</u> 1997). The utilization of traditional food plants is reflected in the community's traditional knowledge of how they were used, protect, and preserved for a long time as a cultural custom in traditional dishes (Pretty 2009; Mekonen 2017; Pandey 2017).

Some of the great challenges to sustaining the sustainability of food plants are urbanization and modern lifestyle. Other studies (Sayok and Teucher 2018; Seto and Reba 2018) have found that the process of becoming more urban has a negative impact on natural resource knowledge and that urbanization is related to the loss of the ability to recognize and understand the plants. Through this urban distribution, people will be much less directly connected to food plants and undoubtedly significantly impact the availability of culturally preferred foods in new locations. For this reason, it is crucial to preserve traditional knowledge, since it would become extinct if there is no longer relationship between the community and the environment. This could lead to traditional knowledge loss related with biodiversity loss (Arjona-Garcia et al. 2021)

A strategy that can be used to enhance biodiversity and sustain ecosystem service is the combination of traditional knowledge and culture (Kimmerer and Lake 2001), which can be seen in their traditional cuisines. A preceding study (Sukenti et al. 2016; Purba et al. 2018; Grubor et al. 2022) has shown that traditional cuisine has become one of the tools to preserve and conserve biodiversity and promotes the culture through gastro tourism (Derek 2021).

One of the ethnic groups that still holds culture and customs that have a habit of urbanization is Gayo Lut community, located in Central Aceh Regency, Indonesia. The number of Gayo Lut people who urbanized to Jabodetabek (Jakarta-Bogor- Depok-Tangerang-Bekasi) continues to rise every year (Interviewed with Gayo Ecolinguist, Yusradi Esman Al-Gayoni). Studies related to Gayo Lut food plant are still lacking and recorded in 2020 by (Hidayati et al. 2021; Sunkar et al. 2021) found as many as 334 potential food plant species in Gayo highland, However, the Gayo language's existence in urbanized culture is in threat since, while the language is spoken by all generations, only a few child-bearing generations are passing it down to their children in categories (Sunkar et al. 2021).

Unfortunately, more traditional knowledge is passed down in oral form through stories, experiences, and language than stored documentation (Sen 2005). This may indicate knowledge loss if people start not knowing their food plants because of the difficulty in adapting to food plants in new places. Therefore, recording the Gayo Lut community's knowledge of traditional cuisine and key food plant species is crucial. This research aims to discover the variety of food plants utilized in the traditional Gayo Lut Cuisine and observe how urbanization has impacted the traditional knowledge of the Gayo Lut Community.

RESEARCH METHOD

This study was conducted in Mude Nosar Village, Central Aceh Regency, Indonesia (4°35'42.06"N, 96°57'3.99"E) from November-December 2020, and in Musara Gayo Jabodetabek Community from March-April 2021 (Figure 1). This study is limited to the people who live in Mude Nosar Village are residents have not migrated outside Aceh, and the Musara Gayo Jabodetabek Community are Gayo community that migrated to the Jakarta-Bogor-Depok-Tanggerang-Bekasi (Jabodetabek) area. Musara Gayo is a Gayo community organization formed to gather Gayo people overseas, one of them is Jabodetabek (musaragayo.com).

Geographically, Mude Nosar Village is directly adjacent to the Lut Tawar Lake tourist area and is located at the foot of Mount Bur Kelieten. Lake Lut Tawar is a lake but looks like an ocean, with one of the endemic biotas, namely *depik* (*Rasbora Tawarensis*). Furthermore, Mount Bur Kelieten has an altitude of 2930 masl, with biodiversity in it. This includes various types of food plants that are used by the community such as coffee, bananas, and Dutch eggplant. The people of Mude Nosar village also have an agroforestry plantation area along the climbing route of Mount Bur Kelietan, besides that the community also has rice fields around their homes which are used to process onions and rice as a source of meeting daily needs and main economic income.

The discovery of Gayo early human fossils that are more than 7400 years old at the Loyang Mendale site (Setiawan 2011), makes Mude Nosar Village the starting point for the spread of the Gayo Tribe (Ibrahim 1980 in Sukiman 2020) with the main subtribe being is Gayo Lut. The Gayo Lut community is one of the tribes that still adheres to its culture and on the other hand, has the belief that to improve the quality of education and life it can be done by urbanization to cities. The Gayo Lut community then gathered to become a Gayo community outside their original area known as "Musara Gayo". Based on the of an interview with Yusradi results (Gayo ethnolinguistic researcher), the JABODETABEK area (Jakarta-Bogor-Depok-Tangerang-Bekasi), is the largest Musara Gayo community that increases every year. Furthermore, Musara Gayo Jabodetabek became the second study area in this research.

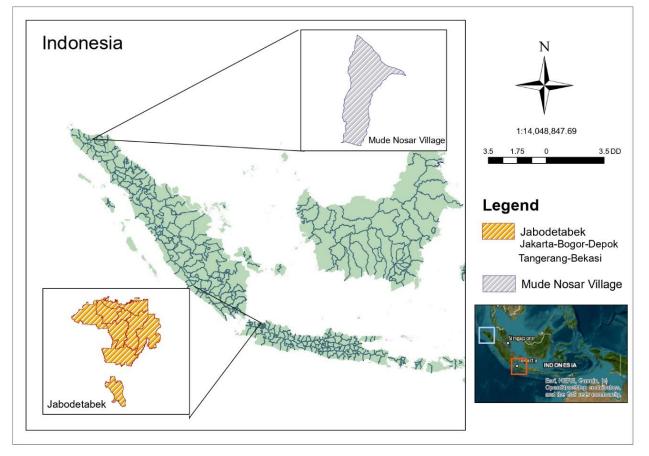


Figure 1. Research area map

No	Respondents	Sampling Method	Criteria	Number of Respondents
1	Elders (Control Data)	Cencus	Elders (≥60 years old)	16
2	Non-Urban (Eksperiment data 1)	Availability Sampling	 Lives in Mude Nosar Village Gayo Lut tribes <60 years old 	16
3	Urban (Eksperiment Data 2)	Purposive Sampling	 Urban Community Gayo Lut tribes <60 years old 	16

Table 1 The number of respondents

The number of respondents of elders are 16 respondents (8 female; 8 male), determined by looking at the condition and willingness of key informants. The 16 key informants were chosen not only based on age, but the ability of respondents, in this case there were only 8 male key informants, because the males are much older and have shown a reduction in responses so that it becomes one of the limitations in the interview process with elders. To balance the proportions, 8 female respondents were taken.

Data collection is carried out in 3 phases of free listing and semi-structured interviews. Free listing is used to document the number of food plants used and Gayo Lut traditional Cuisines known by the communities, with total 48 key informant of Elders, Nonurban and Urban community. This is relevant to previous research (D'Ambrosio and Puri 2016; Hidayati et al. 2017; Sunkar et al. 2021).

The first phase as the basis data involved purposive sampling where 16 elders aged 60 years old and above (50% males and 50% females) were chosen based on their reputation as traditional knowledge keepers. Elders are valued because they uphold historical traditions, customs, and kinship structures that are essential to the group's survival in a harsh environment (Linden 1991). The elders were asked to freelist 25 types of common food plants for Gayo Lut People.

The second phase involved availability sampling, where 16 respondents (50% males, 50% females) aged below 60 years old, were asked to make 25 freelists of Food plant used and Gayo Lut traditional cuisines. The third phase involved the urban community , run by online interview using WhatsApp and Zoom meetings due to the pandemic Covid-19. The urban community asked to freelist 25 types of common food plants for Gayo Lut People and then continue to freelist 25 of Gayo Lut traditional cuisines. Items with the greatest salience are those that informants list most commonly and that informants tend to recall more immediately than other items (Borgatti 1992) and from the list, every 25 foodplants and dishes were selected based on their salience using ANTHROPAC.

Semi-structured interviews with the same respondents are conducted to gather personal information (Name, age, sex, occupation, birthplace), information of food plants (type, part of used, utilization, cultivation), and information on cuisine ingredients (Ingredients, how to get ingredients, cooking process, serving process, use of dishes).

The freelisting of food plants used and traditional cuisines were calculated using the salience index function in the ANTHROPAC software and analyzed descriptively. This analysis can show the food plants and traditional cuisine that is most widely mentioned by both communities (Borgatti 2012; Levine et al. 2015) with the following formula:

$$S_j = ((\sum_{i=1}^{F_j} (L_i - R_{ij} + 1)/L_1)/N$$

Where S_j is Saliency Index j, J is Item to j, L_i is the Number of informants I, R_{ij} is the ranking given by the i-the respondent for the j item, and N is the number of informants.

Furthermore, to analyze the similarities between the various traditional knowledge of food plants among the communities we used the Jaccard similarity index (González-Tejero et al. 2008) calculated using the following formula:

Index of Jaccard =
$$\frac{C}{A+B-C} \times 100$$

Where A is the number of species of sample A, B is the number of species of sample B, and C is the number of species common to A and B. In this study, comparisons will be made between every 2 groups, between Elders and Non-urban groups, Elders and Urban groups, and Non-urban and Urban groups.

RESULT AND DISCUSSION

1. Gayo Lut Food Plant Diversity

In three communities studied, recorded 188 species of food plants that are used by the community. The results are then sorted based on the frequency of mention of the species from the three key groups which can be seen in table 2.

Based on the usage of food plants, it is categorized as spices, vegetables, fruits, beverages, snacks, medicines, and staple food (sequentially) (Figure 2). The community obtains fruits directly from plants around the house and plantation areas. The most fruit consumption was seen in *Gelime (P. guajava)* (16 mentions) and *Pokat* (*P. americana*) (14 mentions), and traded when entering the harvest season, the top food plant used as a vegetable is *Jepang* (S. *edulis*) (12 mentions). This has been known and used by the Gayo Lut People since the Japanese colonial period (Sukiman 2020), and a multi-

Table 2 Gayo Lut Traditional Food Plant.

when functional crop that can be grown in a variety of climates as a (Bal Krishna et al. 2020). In addition, *Jepang* also served a variety of dishes in wedding ceremonies and annual ceremonies for 7 days of birth, *Turun mani*.

No	Botanical Name	Local Name	NOM* (Elder)	NOM* (Non-Urban)	NOM* (Urban)	Category o use
1	Citrus sp.	Asam Jantar	5	7	3	Spices
2	Arenga pinnata (Wumb) Merr.	Anau	0	2	1	Beverage
3	Malus domestica	Apel	0	0	2	Fruit
4	Tamarindus indica L.	Asam Jewe	2	1	0	Spices
5	Citrus sp.	Asam Kelele	2	0	0	Spices
6	Citrus x aurantifolia (Critsm.)	Asam Kuyun	5	6	6	Spices
7	Citrus limon L.	Asam Lemon	8	0	1	Spices
8	Averrhoa bilimbi L.	Asam Sunti	5	0	0	Fruit
9	Citrus sp.	Asam ganesah	0	1	0	Fruit
10	Citrus sp.	Asam Gelime	0	0	1	Fruit
11	Citrus sp.	Asam Gelime manis	0	2	1	Fruit
12	Citrus sp.	Asam Gerahgiri	0	1	2	Fruit
13	Citrus sp.	Asam Jering	0	0	1	Fruit
14	Citrus sp.	Asam Kelele	0	3	2	Fruit
15	Citrus sp.	Asam Kenyeren	0	0	1	Fruit
16	Citrus reticulata L.	Asam Keprok	0	1	3	Spices
17	Citrus sp.	Asam Mungkur	0	0	3	Spices
18	Citrus sp.	Asam Munti	0	0	1	Spices
19	Citrus sp.	Asam Pepok	0	1	0	Spices
20	Citrus sp.	Asam Taik Kurik	0	1	1	Fruit
21	Musa sp.	Awal	0	1	0	Fruit
22	Musa sp.	Awal (Pisang) Beret	8	2	5	Fruit
23	Musa acuminata x balbisiana	Awal Abu	2	4	2	Fruit
24	Musa sp.	Awal Nur	0	5	3	Fruit
25	Musa sp.	Awal Bok	0	2	0	Fruit
26	Musa sp.	Awal Coeng	0	0	2	Fruit
27	Musa sp.	Awal Keken	0	0	1	Fruit
28	Musa acuminata	Awal Mas	0	0	1	Fruit
29	Musa paradisiaca	Awal Nangka	0	0	1	Fruit
30	Musa sp.	Awal Suasah	0	0	1	Fruit
31	Musa acuminata x Musa balbisiana	Awal Wak	0	2	0	Fruit
32	Nicotiana tabacum	Bajik	0	1	0	Spices
33	Unidentified	Bako	2	0	0	Medicine
34	Unidentified	Batang Teguh	0	0	1	Medicine
35	Amaranthus sp.	Bayem	2	5	2	Vegetable

No	Botanical Name	Local Name	NOM* (Elder)	NOM* (Non-Urban)	NOM* (Urban)	Category or use
36	Melastoma candidum L.	Beke	1	1	2	Fruit
37	Piper betle	Belo	5	0	2	Snack
38	Pachyrhizus erosus	Bengkuang	0	0	1	Vegetables
39	Mangifera foetida	Berhul	0	1	0`	Fruit
40	Zingiber sp.	Bing	2	4	5	Spices
41	Zingiber zerumbet	Bing Ilang	1	3	2	Spices
42	Zingiber officinale	Bing Putih	7	3	1	Spices
43	Unidentified	Biwa	1	2	0	Spices
44	Illicium verum	Bunge Lawang	1	2	1	Spices
45	Unidentified	Celala	0	0	1	Spices
46	Syzygium armaticum	Cengkeh	1	0	0	Spices
47	Schizophyllum commune	Cibit	2	0	0	Vegetable
48	Pleurotus ostreatus	Dahniken	3	0	0	Vegetable
49	Syzygium polyanthum	Daun Salam	1	1	2	Spices
50	Physalis angulata L.	Dedepok	0	2	0	Vegetable
51	Auricularia auricula-judae	Dememir	4	0	2	Spices
52	Durio zitbethinus Murr.	Durin	1	5	4	Spices
53	Annona muricata	Durin Belene	0	0	1	Spices
54	Zanthoxylum acanthopodium	Empan	6	5	7	Spices
55	Manihot esculenta	Gadong	10	5	11	Spices
56	Manihot sp.	Gadong Item	1	1	2	Spices
57	Solanum tuberosum	Gantang	5	6	5	Spices
58	Passiflora foetida	Gegamut	0	0	1	Spices
59	Mentha cordifolia	Gegarang	7	7	5	Spices
60	Phyllanthus acidus L. Skeels	Gele	1	0	0	Fruit
61	Psidium guajava	Gelime	3	5	8	Fruit
62	Psidium guajava	Gelime Ilang	4	1	0	Fruit
63	Punica granatum Linn.	Gelime Mekah	1	1	1	Spices
64	Psidium sp.	Gelime Kapas	0	1	0	Fruit
65	Psidium sp.	Gelime Putih	0	1	0	Fruit
66	Unidentified	Gelune	1	0	0	Spices
67	Unidentified	Genjer	0	0	1	Spices
68	Unidentified	Gume	2	0	0	Medicine
69	Benincasa hispida Cogn	Gunur	0	0	2	Vegetable
70	Zea mays	Jagong	3	1	1	Vegetable
71	Nasturtium microphyllum	Jambek	1	0	0	Vegetable
72	Syzygium aqueum (Burm.f.) Alston	Jamu	0	2	3	Fruit
73	<i>Syzygium</i> sp.	Jamu Putih	1	1	0	Fruit
74	Eugenia cumini Merr.	Jemblang	1	0	1	Vegetable
75	Archidendron pauciflorum	Jengkol	0	0	1	Vegetable
76	Sechium edule	Jepang	12	14	14	Vegetable

No	Botanical Name	Local Name	NOM* (Elder)	NOM* (Non-Urban)	NOM* (Urban)	Category of use
77	Unidentified	Jireu	0	1	0	Spices
78	Psophocarpus tetragonolobus	Kacang Glise	1	1	0	Vegetables
79	Phaseolus vulgaris	Kacang Ilang	7	5	3	Vegetables
80	Canavali ensiformis	Kacang Koro	3	6	2	Vegetables
81	Unidentified	Kacang Memin	1	0	0	Vegetables
82	Momordica charantia	Kacang Prie	1	3	0	Vegetables
83	Vignaungui culata ssp.	Kacang Ranting	9	10	7	Vegetables
84	Phaceolus vulgaris	Kacang Sontok	3	4		Vegetables
85	Aracis hypogaea	Kacang Tanoh	4	3	1	Vegetables
86	Psophocarpus sp.	Kacang Telak	1	0	0	Vegetables
87	Glycine max	Kacang Uni	1	1		Vegetables
88	Phaseolus vulgaris	Kacang Buncis	0	2	1	Vegetables
89	Pisum sativum	Kacang Kapri	0	0	1	Vegetables
90	Phaseolus vulgaris	Kacang Kunul	0	3	4	Vegetables
91	Uncaria gambir	Каси	2	0	1	Vegetables
92	Garcinia atroviridis	Kanis	1	0	0	Vegetables
93	Diospyros kaki	Kasemah	1	5	1	Fruit
94	Scurrula sp.	Kayu Nalu	1	0	0	Vegetables
95	Cycas cirninalis	Keloang	6	4	6	Vegetables
96	Cycas sp.	Keloang Jewe	1	0	0	Vegetables
97	Aleurites moluccanus	Kemili	1	8	3	Spices
98	Ipomoea batatas	Kepile	2	6	8	Snack
99	Ipomoea batatas	Kepile Ilang	2	0	0	Snack
100	Ipomoea batatas	Kepile Kuning	4	0	0	Snack
101	Cocos nucifera	Keramil	6	1	2	Spices
102	Morus alba	Kertu	1	0	0	Snack
103	Coriandrum sativum	Ketumer	2	4	7	Snack
104	Brassica oleracea	Kol	2	6	5	Spices
105	Unidentified	Konyel	1	0	0	Vegetables
106	Cinnamomum burmanii	Kulit Manis	1	0	2	Spices
107	Curcuma longa	Kuning	13	6	7	Spices
108	Curcuma zanthorrhiza	Kuning Gajah	2	0	0	Spices
109	Coffea arabica	Kupi	10	9	4	Spices
110	Coffea arabica	Kupi Arabika	0	1	0	Beverage
111	<i>Coffea</i> sp.	Kupi Kucak	0	1	0	Beverage
112	<i>Coffea</i> sp.	Kupi Robusta	0	1	0	Beverage
113	Cucurbita moschata	Labu Manis	0	4	4	Vegetables
114	Alllium sp.	Lasun Bok	2	0	0	Spices
115	Allium cepa L.	Lasun Ilang	14	11	9	Spices
116	Allium Sativum	Lasun Putih	6	8	5	Spices

No	Botanical Name	Local Name	NOM* (Elder)	NOM* (Non-Urban)	NOM* (Urban)	Category o use
117	Alpinia galaga	Lengkues	8	8	7	Spices
118	Capsicum sp.	Leude Ilang	0	1	6	Spices
119	Capsinum frustescens Linn.	Leude Kucak	5	0	0	Spices
120	Piper nigrum	Leude Pedih	1	3	7	Spices
121	Capsicum annuum	Leude Pentek	14	5	1	Spices
122	Capsicum sp.	Leude Caplak	0	3	2	Spices
123	Capsicum sp.	Leude Ijo	0	2	6	Spices
124	Capsicum sp.	Leude Kul	0	4	0	Spices
125	Eugenia cumini Merr.	Lukup	0	0	1	Spices
126	Arum esculentum	Lumu Gayo	8	1	4	Vegetable
127	<i>Mangifera</i> sp.	Mancang	0	0	3	Fruit
128	<i>Mangifera</i> sp.	Mangga	0	2	0	Fruit
129	Citrus hystrix	Mungkur	2	0	0	Spices
130	Artocarpus heterophyllus	Nangka	3	4	8	Spices
131	Ananas comosus	Nas	3	6	3	Fruit
132	Passiflora quadrangularis Linn.	Nenggeri	0	5	2	Fruit
133	Pogostemon cablin	Nilem	2	0	0	Fruit
134	Unidentified	Noni	0	0	1	Fruit
135	Myristica fragrans	Pala	1	0	0	Spices
136	Arenga pinnata	Pango	1	0	0	Beverage
137	Carica papaya	Pertik	5	0	8	Spices
138	Parkia speciosa	Pete	0	3	4	Vegetable
139	Luffa acutangtula Roxb.	Peterle	0	0	2	Vegetable
140	Cucurbita moschata Duch.	Petukel	8	9	11	Snack
141	Unidentified	Petule	0	0	1	Spices
142	Areca catchu	Pinang	1	1	0	Spices
143	Persea americana	Pokat	5	6	3	Fruit
144	Etlingera sp.	Pokol	0	1	1	Fruit
145	Nephelium lappaceum	Rambutan	0	0	2	Fruit
146	Unidentified	Rembele	1	1	1	Fruit
147	Mangifera laurina Blume	Rempelam	2	2	3	Fruit
148	Ipomoya aquatica	Rempon	5	3	5	Vegetable
149	Unidentified	Rengkenil	1	0	0	Vegetable
150	<i>Oriza</i> sp.	Rom	0	1	1	Staple Foo
151	Oriza sp.	Rom Rendah	4	1	0	Staple Foo
152	Oriza sp.	Rom Unggul	2	2	0	Staple Foo
153	Oriza sp	Rom Konon	0	0	1	Staple Foo
154	Solanum nigrum Linn.	Rukut	6	7	6	Snack
155	Berasica juncea L.	Sawi	3	6	3	Vegetable
156	Brassica pekinensia L.	Sawi Putih	3	1	0	Vegetable
157	Pandanus amaryllifolius	Seki Pulut	3	7	4	Spices

No	Botanical Name	Local Name	NOM* (Elder)	NOM* (Non-Urban)	NOM* (Urban)	Category o use
158	Lactuca sativa L.	Selada	0	1	3	Vegetables
159	Averrhoa sp.	Seliming	0	4	1	Spices
160	Citrullus lanatus	Semangka	0	2	0	Fruit
161	Cymbopogon nardus L.	Serre	8	5	9	Spices
162	Etlingera sp.	Serulle	0	2	3	Fruit
163	Apium graveolens	Sop	2	3	3	Spices
164	Fragaria x ananassa	Stroberi	0	1	0	Fruit
165	Amaranthus sp.	Tamok	1	4	3	Vegetable
166	Saccharum sp.	Таи	1	0	4	Beverage
167	Saccharum sp.	Tau Pedeh	1	0	0	Beverage
168	Saccharum sp.	Tau Tawar	2	0	0	Beverage
169	Kaempveria galanga L.	Tekur	1	0	1	Spices
170	Murraya koenigii	Temuru	1	1	1	Spices
171	Protium javanicum	Tenggolon	1	3	1	Spices
172	Unidentified	Tengkereng	1	0	0	Spices
173	Unidentified	Tepung Belilit	1	0	0	Medicine
174	Solanun melongena	Terong	5	2	3	Vegetable
175	Solannum betaceum Cav.	Terong Agur	6	6	10	Vegetable
176	Solanum lycopersicum	Terong Padul	8	3	4	Vegetable
177	Solanum sp.	Terong Panjang	3	0	0	Vegetable
178	Nicolaia speciosa Horan	Terpuk	2	2	8	Vegetable
179	Cucumis sativus	Timun	1	2	2	Beverage
180	Citrullus lanatus	Timundiki	1	0	0	Fruit
181	Solanum lycopersicum	Tomat	6	8	1	Vegetable
182	Dendrocalamus asper	Tuis	2	6	5	Vegetable
183	Sechium edule	Tutit	2	0	1	Vegetable
184	Allium fistulosum L.	Ulung Lasun	2	0	3	Spices
185	Sauropus androgynus	Ulung Katuk	0	0	1	Spices
186	Solanum torvum	Ungke	1	4	5	Spices
187	Myristica fragrans	Uwah Pala	0	1	0	Beverage
188	Daucus carota	Wortel	1	8	3	Vegetable

Description: *NOM: Number of Mention

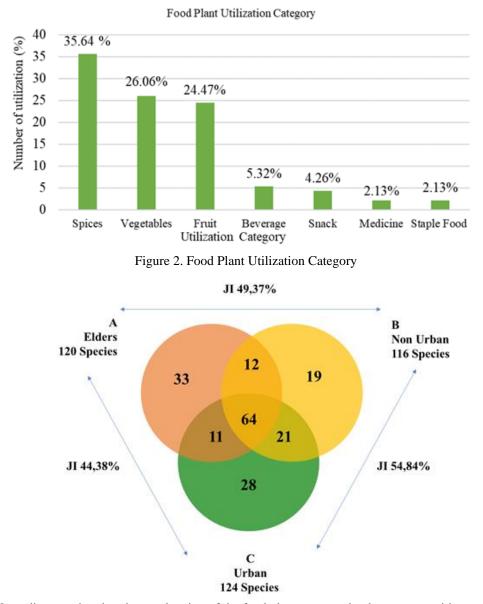


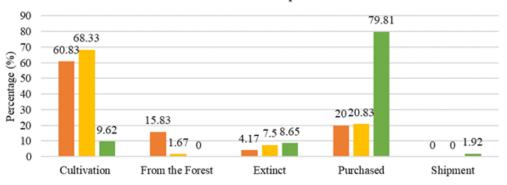
Figure 3 Venn diagram showing the overlapping of the food plants among the three communities studied as well as their Jaccard indexes

The most widely used category by the non-urban community is spices (35.64%), such *Lasun Ilang (A. cepa)* that also became food plant with the highest salience value (Table 2). This food plant also become the most used food plant in Gayo Lut traditional cuisine. The role of spices in dishes is also inextricably linked and used to flavor, color, and preserve food in addition to improving savory (Srinivasan 2005). The sour and spicy flavor is a trademark of Gayo cuisine in general, so the food's ingredients become essential. In contrast to non-urban groups, urban communities have fruit as a category for the use of food plants that can be influenced by the presence of urban communities which undoubtedly has a significant impact on the availability of culturally preferred foods in new locations.

2. The effects of urbanization on the Gayo Lut Traditional Knowledge a. Traditional knowledge of Food plants

Analysis with the Jaccard index is carried out to see the percentage of similarities among the communities. This data is interpreted in the Venn diagram in Figure 3. The highest similarity is shown between the non-urban community and the Urban community (54,48%). Meanwhile, the percentage of the two groups towards elders showed a similarity of less than 50%. Although the similarity between elders and non-urban groups is still higher (49,37%) than the urban group (44,38%). This trend is similar to previous research in Europe, which shows that there are differences between urban and non-urban groups because the transmission of food plant knowledge tends to be more influenced by media and rich social exchange (Fontefrancesco and Pieroni 2020).

As well this study, it can be seen that there is a transmission of traditional food plant knowledge from the Elders group who are more than 59 years old with two other groups less than 60 years old who have experienced modernization and urbanization, as according to Mcinerney (2002), knowledge is founded in or comes from life forms, and so it is constantly evolving with human experience.


For both communities, elders and non-urban, *Lasun ilang* (*A. cepa*) has become the main commodity after rice and has been designated as horticultural crop varieties (Decree of the Minister of Agriculture, Indonesia O34/ KPTS.SR.120 /d.2.7/3/2019). Both communities, elders and non-urban plant by applying crop rotation between shallots and rice. This is done to increase the community's livestock and according to Nunis and Harlock (2005), this method can affect soil fertility. Meanwhile, Japan and *Kupi* also support the cultural and food needs of the Gayo community. The tradition of drinking *Kupi* (*Coffea* sp.) has the slogan "*Gere ara Kupi, Gere ara Cerite*" (no coffee, no story).

In contrast to it, the urban community came up with different important food plants. This difference occurred

because the habits and environmental conditions of residence between non-urban and urban communities are also much different. The characteristics of non-urban groups tend to offer large areas of agriculture and forest so that people can take advantage of nature directly. While the Urban group has an urban living area that has minimal open space. Then it becomes difficult for urban communities to carry out food plant cultivation activities

This is in line with the way the community obtains these food plants (Figure 4). For the non-urban, only 20% of the species were purchased, while for the urban, the species obtained by purchase reached 79.81%. This is inversely proportional to the way to get plants through plant cultivation. For the non-urban, the number reached 68.33% of the species, while for the urban only 9.62% of the species were cultivated. Limited area become the main reason for urban communities to cultivate plants, on the other hand buying is considered more efficient in time, where urban groups also do not work as farmers.

However, the interesting point is that there is 1.92% (*gegarang* and *empan*) of food plants are obtained by the urban community by being sent directly from Gayo Lut. The results of the interview show that some food plants cannot be found in Jabodetabek, and if they are substituted with other types of food plants, it will give a different taste to the traditional Gayo Lut cuisine which is still enjoyed by urban communities in Jabodetabek.

How to obtain food plants

How to obtain the food plants

Elder Non Urban Urban

Figure 4. Diagram showing the comparison of how to obtain food plants between study groups

Table 3. A total of 25 Gayo Lut Food plants based on its salience.

No	Elders	Non-Urban	Urban
1	Lasun Ilang	Jepang	Gadong
	(Allium cepa var. aggregatum.)	(Sicyos edulis Jacq.)	(Manihot esculenta Crantz)
C	Leude Pentek	Lasun Ilang	Petukel
2	(Capsinum frustescens Linn.)	(Allium cepa var. aggregatum.)	(Cucurbita moschata Duch.)
3	Jepang (Sicyos edulis Jacq.)	Petukel (Cucurbita moschata Duch.)	Kuning (Curcuma longa)
4	Kuning	Lasun Putih	Terong Agur
4	(Curcuma longa L.)	(Allium sativum Linn.)	(Solanum betaceum Cav.)
5	Kupi (Coffea arabica Linn.)	<i>Kupi (Coffea</i> sp.)	Pertik (Carica papaya L.)

The Influence of Urbanization on Traditional Food Plant Knowledge and Traditional Cuisine of Gayo-Lut Community

No	Elders	Non-Urban	Urban
6	Asam Lemon (Citrus limon L.Burm.f.)	Kacang Ranting (Vignaungui culata ssp.)	Lasun Ilang (Allium cepa var. aggregatum.)
7	Petukel (Cucurbita moschata Duch.)	Asam Jantar (Citrus sp.)	<i>Kepile (Manihot esculenta</i> Crantz.)
8	Kacang Ranting	Rukut	Keloang
	(Vignaungui culata ssp.)	(Solanum nigrum Linn.)	(Cycas cirninalis L.)
9	Gadong	Gantang	Ketumer
	(Manihot esculenta Crantz)	(Solanum tuberosum Linn.)	(Coriandrum sativum L.)
10	Lasun Putih	Gegarang	Gelime
	(Allium sativum Linn.)	(Mentha cordifolia)	(Psidium guajava Linn.)
11	Bing Putih	Sawi	Serre
	(Zingiber officinale Roscoe)	(Berasica juncea L.)	(Cymbopogon cytratus Stapf.)
12	Kacang Ilang	Gadong	Terpuk
	(Vigna unguiculata (L.) Walp.)	(Manihot esculenta Crantz)	(Nicolaia speciosa Horan)
13	Terong Agur (Solanun betaceum Linn.)	Kuning (Curcuma longa L.)	Lengkues (Alpinia galanga (L.) Willd.)
14	Tomat (Solanum lycopersicum Linn.)	Lengkues (Alpinia galanga (L.) Willd.)	Gantang (Solanum tuberosum Linn.)
15	Serre	Wortel	Empan (Zanthoxylum
	(Cymbopogon cytratus Stapf.)	(Daucus carota Linn.)	acanthopodium DC)
16	Empan (Zanthoxylum acanthopodium DC)	Kemili (Aleurites moluccanus (L.) Wild.)	Lasun Putih (Allium Sativum)
17	Gantang	Awal Nur	Bing
	(Solanum tuberosum Linn.)	(Musa sp.)	(Zingiber officinale Roscoe)
18	Lengkues	Kol	Asam Kuyun
	(Alpinia galanga (L.) Willd.)	(Brassica oleracea L.)	(Citrus x aurantifolia Swingle)
19	Terong	Bing	Gegarang
	(Solanum melongena L.)	(Zingiber officinale Roscoe)	(Mentha cordifolia)
20	Gegarang	Awal Abu	Kacang Ranting
	(Mentha cordifolia)	(Musa sp.)	(Vignaungui culata ssp.)
21	Leude Kucak (Capsinum frustescens Linn.)	Asam Kuyun (Citrus x aurantifolia Swingle.)	Leude Ijo (Capsicum sp.)
22	<i>Terong Padul (Solanum lycopersicum</i> var. cerasiforme)	Empan (Zanthoxylum acanthopodium DC)	Kupi (Coffea arabica Linn.)
23	Awal Beret	Tomat (Solanum lycopersicum L.)	<i>Tuis</i> (Dendrocalamus asper Schult.f.)
24	Rom Rendah	Tuis	Rempon
	(Oryza sativa Linn.)	(Dendrocalamus asper (Schult.f.))	(Ipomoya aquatica Forssk.)
25	Asam Jantar	Kacang Koro	Jepang
	(Citrus sp.)	(Canavali ensiformis (L.) DC.)	(Sicyos edulis Jacq.)

b. Traditional Knowledge of Traditional cuisines

Traditional cuisines are valued because they showcase the community's tradition and provide numerous health benefits (Emmanuel et al. 2017). According to the findings of this study, a total of 224 traditional cuisines of Gayo Lut found and 90.1% of it, use food plants as food ingredients. The similarity among the communities were interpreted in the Venn diagram in **Figure 5**. The highest similarity was shown by the Elder and Non-urban groups (54,40%). Meanwhile, the percentage of the urban community towards elders showed the lowest similarity of 24,63%.

What is of concern is that the Urban community recorded up to 164 traditional cuisines, in contrast to the elderly (84 dishes) and non-urban (104 dishes) groups. Significant differences were also noted in the study of Arjona-García et al. (2021), where urban communities have greater knowledge of traditional medicine than nonurban groups. According to Vandebroek and Balick (2012), this can happen because urban communities still maintain their traditional knowledge due to demographics and history. In this case, the Urban Gayo Lut community joined in the Gayo Lut community in Jabodetabek and often held traditional events that served traditional Gayo Lut cuisine (interviewed with Gayo Ecolinguist, Ysradi Esman Al-Gayoni).

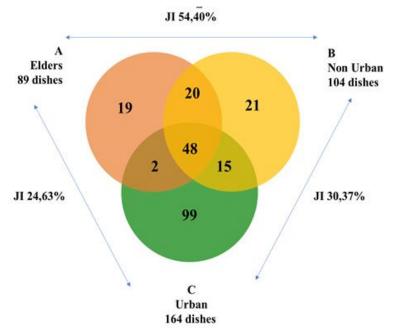


Figure 5. Venn diagram showing the overlapping of the traditional cuisine knowledge among the three communities studied as well as their Jaccard Indexes

One of the changes in the variety of traditional cuisine between the Non-urban and Urban groups can be seen in the variety of ingredients used, namely the Macam Jing Jahir menu. Urban people tend to add additional ingredients in the form of boiled quail eggs, so children want to enjoy this menu. This is included in the form of their adaptation so that they can preserve the menu of Macam Jing Jahir for the next generation even though they are far from Gayo land in Takengon, Central Aceh. The variety of food ingredients is also inseparable from the involvement of other ingredients that can maintain the authenticity of the taste of traditional Gayo Lut cuisine. Lasun Ilang (A. cepa) is the ingredient with the highest frequency of use (40% cuisines). This plant is also included in the important food crops for the Elderly and non-urban communities (Table 3).

Based on Hasibuan et al. (2020), A. cepa contains flavonoid compounds, saponins, tannins, alkaloids, and steroids and is a source of vitamins, antioxidants and other minerals that can be used for the prevention of various diseases (Dalhat et al. 2018). There are also food plants that are distinctive to Gayo Lut Traditional Cuisine but are difficult to find in other locations, such as Empan (Z. acanthopodium DC) and Gegarang (M. Empan (Z. acanthopodium) includes cordifolia). chemicals such as phenolics as antimicrobial, saponins as antioxidant, flavonoids as respiratory inhibitor, tannins as anti-diarrheal, triterpenoids as antibacterial, and alkaloids as insecticidal that can treat ailments such as diabetes, menstruation disorders, snake bites, skin disorders (Saragih and Arsita 2019), Gegarang (M. cordifolia) has rosmarinic acid compound as an antimicrobial against bacteria (Kapp 2015). This variety of phytochemical

contents has shown that Gayo Lut Traditional Cuisine has supported community health with the important nutrients and phytochemicals contains in the food plants which processed into traditional cuisine.

Gayo Lut people's awareness of the need for food plants for dishes, which is the key to culture, makes this food plant important to ensure its existence. Gayo Lut traditional knowledge on how the community cultivates and utilizes the key species in traditional cuisines as the agrobiodiversity can be a form of conservation of the key food plants species of Gayo Lut.

3. Ecotourism potential of Gayo Lut

The result of the study showing that urban communities can mention a greater number of food plants indicates that urban people are still able to maintain a comprehensive amount of food plants knowledge. This in line with Sunkar et al. (2021), shows the Gayo diaspora community in Jabodetabek still maintain ethnobotanical knowledge by still using Gayo language in communicating at Jabodetabek community events. According to Sunkar et al. (2021), the existence of the Gayo community in Jabodetabek can also be regarded as a core zone in ensuring the sustainable use of the Gayo in the non-urban area (Gayo Highlands). Other potential contributions to preserve Gayo Lut Culture and food plant diversity can be seen in Gastrotourism. Traditional cuisine has been examined as an indigenous asset for community-based tourism, where it plays an important role in community development and biodiversity conservation (Putri et al. 2017). The tourism in Central Aceh is highly potential, considering that the Gayo Lut are indicated to be the oldest tribe in Sumatra and offer views of Lake Lut Tawar, and Mount Bur Kelieten. In addition, Central Aceh has an airport that is connected to Kualanamu-International-Airport in Medan, as a city for Lake Toba which is currently a super priority destination by the Ministry of Tourism. Therefore, tourists can add Central Aceh on their list after visiting Lake Toba.

CONCLUSION

This study presented the findings of food plants associated with cuisines traditions to conserve biodiversity in Gayo Lut on documenting the rather extensive knowledge of food plants and their salience among a sample of the Gayo Lut People. This knowledge of traditional food plants is dynamic and can be determined by sociocultural process such as urbanization. A total of 188 food plant recorded, with the highest salience index become a key species in supporting the economic needs of the community and their traditional cuisines for the elders and non-urban, such as *lasun ilang* (*A. cepa*), *Kupi* (*Coffea* sp.), respectively, while for urban community is *Gadong* (*M. esculenta*) but not for supporting the economic needs, but traditional cuisines.

The existence of traditional cuisines is important for the Gayo community. This can maintain the relationship and dependence of the community on the surrounding forests and plantations, which is indirectly helps to maintain the conservation of food plants, and indirectly the preservation of traditional Gayo Lut cuisine will also be maintained. In this study it was also seen that urban people modified recipes as a form of adaptation but still maintained their distinctive flavors.

Since there is no written record of traditional knowledge and transmission is only through oral communication, collaboration with the urbanized Gayo Lut community is required to understand the knowledge change. Studies related to the potential for culinary tourism in the Gayo Lut community also need to be carried out to preserve culture and its biodiversity.

REFERENCE

- Arjona-Garcia C, Blancas J, Beltran-Rodriguez L, Binnquist CL, Bahena HC, Moreno-calles AI, Sierra-Huelsz JA, Lopez-Medellin X. 2021. How does urbanization affect perceptions and traditional knowledge of medicinal plants. *Journal of ethnobiology and ethnomedicine*. 17:48.
- Bal Krishna J, Shreesti S, Bibechana A, Mukunda B. 2020. TRADITIONAL PRACTICES AND GENETIC DIVERSITY ON CHAYOTE LANDRACES AND THEIR CONSERVATION. *Natural Resources and Sustainable Development*. 10(2):272–288.doi:10.31924/nrsd.v10i2.060.
- Borgatti S P. 1992. ANTHROPAC 4.00 methods guide. Analytic Technologies, Columbia.

- Borgatti SP. 2012. Stephen Peter Borgatti. *Ecol Modell*.(December):1–12.
- Dalhat MH, Adefolake FA, Musa M. 2018. Nutritional Composition and Phytochemical Analysis of Aqueous Extract of Allium cepa (Onion) and Allium sativum (Garlic). *Asian Food Science Journal*. 3(4):1–9.doi:10.9734/afsj/2018/43165.
- D'Ambrosio U, Puri RK. 2016. Foodways in transition: Food plants, diet and local perceptions of change in a Costa Rican Ngäbe community. *J Ethnobiol Ethnomed*. 12(1).doi:10.1186/s13002-015-0071-x.
- Derek M. 2021. Nature on a plate: Linking food and tourism within the ecosystem services framework. *Sustainability* (*Switzerland*). 13(4):1– 17.doi:10.3390/su13041687.
- Fontefrancesco MF, Pieroni A. 2020. Renegotiating situativity : transformations of local herbal knowledge in a Western Alpine valley during the past 40 years. :1–20.
- González-Tejero MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, Giusti ME, Censorii E, de Pasquale C, Della A, *et al.* 2008. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. *J Ethnopharmacol.* 116(2):341–357.doi:10.1016/j.jep.2007.11.045.
- Grubor B, Pivarski BK, Đerčan B, Tešanović D, Banjac M, Lukić T, Živković MB, Udovičić DI, Šmugović S, Ivanović V, et al. 2022. Traditional and Authentic Food of Ethnic Groups of Vojvodina (Northern Serbia)—Preservation and Potential for Tourism Development. Sustainability (Switzerland). 14(3).doi:10.3390/su14031805.
- Hasibuan AS, Edrianto V, Purba N. 2020. Skrining Fitokimia Ekstrak Etanol Umbi Bawang Merah (Allium cepa L.). JURNAL FARMASIMED (JFM). 2(2):45–49.doi:10.35451/jfm.v2i2.357.
- Hidayati S, Iman Suansa N, Merlin Franco F. 2017. Using Ethnotaxonomy to assess Traditional Knowledge and Language vitality: A case study with the Urang Kanekes (Baduy) of Banten, Indonesia. Volume ke-16.
- Hidayati S, Sunkar A, Suansa NI, Fuadah AS, Hartoyo APP. 2021. Ethnotaxonomy of food plants in Gayo People: A case study in the Jabodetabek community. *IOP Conf Ser Earth Environ Sci.* 771(1).doi:10.1088/1755-1315/771/1/012039.
- Kapp K. 2015. Polyphenolic and Essential Oil Composition of Mentha and Their Antimicrobial Effect DIVISION OF PHARMACEUTICAL BIOSCIENCES FACULTY OF PHARMACY DOCTORAL PROGRAMME IN DRUG RESEARCH UNIVERSITY OF HELSINKI.
- Kimmerer RW, Lake FK. 2001. Kimmerer and Lake 2001. *J For*. 99(11):36–41.
- Kunwar RM, Bussmann RW. 2008. Ethnobotany in the Nepal Himalaya. *J Ethnobiol Ethnomed*. 4(January).doi:10.1186/1746-4269-4-24.

- Levine J, Muthukrishna M, Chan KMA, Satterfield T. 2015. Theories of the deep: Combining salience and network analyses to produce mental model visualizations of a coastal british columbia food web. *Ecology and Society*. 20(4).doi:10.5751/ES-08094-200442.
- Linden E. 1991. Lost Tribes, Lost Knowledge. Time:46-54.
- Maundu PM. 1997. The Status of Traditional Vegetable Utilization in Kenya. in: Guarino L. (ed.). Traditional African Vegetables: Promoting the Conservation and Use of Underutilized and 9 Neglected Crops. Proceedings of the IPGRI International Workshop on Genetic Resources of traditional vegetables in africa: conservation and use; 1995 aug 29-31; nairobi; kenya; rome: institute of plant genetic and crop plant research.
- Mcinerney C. 2002. Knowledge management and the dynamic nature of knowledge. Volume ke-53.
- Mekonen S. 2017. Roles of Traditional Ecological Knowledge for Biodiversity Conservation. *Journal of Natural Sciences Research*. 7(15):21-27–27.
- Nunis T, Harlock S. 2005. Field Management and Rotations. In Organic Vegetale Production: A complete Guide. (ed.) Davies G, Lennartsson M, in association with the Henry Doubleday Research Association, UK pp.140-154.
- Pandey A. 2017. Ethnobotany and Its Relevance in Contemporary Research.

Pretty JN. 2009. Conservation & Society. (December).

- Purba EC, Silalahi M, Nisyawati. 2018. Gastronomic ethnobiology of "terites"—a traditional Batak Karo medicinal food: A ruminant's stomach content as a human food resource. *Journal of Ethnic Foods*. 5(2):114–120.doi:10.1016/j.jef.2018.06.002.
- Putri WK, Hakim L, Indriyani S. 2017. Plants Diversity for Ethnic Food and the Potentiality of Ethnoculinary Tourism Development in Kemiren Village, Banyuwangi, Indonesia. *Journal of Indonesian Tourism and Development Studies*. 5(3):161– 168.doi:10.21776/ub.jitode.2017.005.03.04.

- Richardson RB. 2010. Ecosystem services and food security: Economic perspectives on environmental sustainability. *Sustainability*. 2(11):3520– 3548.doi:10.3390/su2113520.
- Saragih DE, Arsita EV. 2019. Kandungan fitokimia Zanthoxylum acanthopodium dan potensinya sebagai tanaman obat di wilayah Toba Samosir dan Tapanuli Utara, Sumatera Utara. *Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia*. 5(1):71– 76.doi:10.13057/psnmbi/m050114.
- Sayok AK, Teucher U. 2018. Loss of Food Plants Knowledge and Identity among Indigenous Peoples in Malaysia. *Journal of Advanced Research in Social and Behavioural Sciences Journal homepage*. 11(June):174–188.
- Sen B. 2005. Indigenous knowledge for development: Bringing research and practice together. *The International Information & Library Review*. 37(4):375–382.doi:10.1016/j.iilr.2005.10.004.
- Seto KC, Reba M. 2018. City Unseen: New Visions of an Urban Planet.
- Shaheen H, Shinwari ZK, Qureshi RA, Ullah Z. 2012. Indigenous plant resources and their utilization practices in village populations of Kashmir Himalayas. *Pak J Bot.* 44(2):739–745.
- Srinivasan K. 2005. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects. Food reviews international . 21(2):167-188.Sukenti K, Hakim L, Indriyani S, Purwanto Y, Matthews PJ. 2016. Ethnobotanical study on local cuisine of the Sasak tribe in Lombok Island, Indonesia. *Journal of Ethnic Foods*. 3(3):189–200.doi:10.1016/j.jef.2016.08.002.
- Sunkar A, Hidayati S, Hartoyo AP, Al-Gayoni YU. 2021. Ethnobotanical knowledge and vitality of Gayo ethnolinguistic in Jabodetabek, Indonesia. *IOP Conf Ser Earth Environ Sci.* 771(1).doi:10.1088/1755-1315/771/1/012007.
- Vandebroek I, Balick MJ. 2012. Globalization and loss of plant knowledge: Challenging the paradigm. PLoS One. 7(5).doi:10.1371/journal.pone.0037643.