IMAGING THERMOHALINE FINE STRUCTURE USING MULTICHANNEL SEISMIC REFLECTION IN THE NORTHERN MALUKU SEA

Randi Firdaus, Henry Munandar Manik, Agus Saleh Atmadipoera, Rina Zuraida, Catur Purwanto

Abstract

Low-frequency acoustic such as marine seismic that has been commonly used in geological mapping is nowadays being developed as tools to map the water columns. This study aims to map thermohaline fine structure in the Northern Maluku Sea. Seismic reflection data from 72 channel along 239 km track line was processed to delineate water column structure. The depth-distance seismic oceanography section clearly showed reflectors at depth of 400 m and 800 m correspond to lower boundary of the seasonal and permanent thermocline layers, respectively. The reflections between depth of 400 m and 800 m were caused by the thermohaline staircase as confirmed by CTD data. Water column reflections showed the presence of internal wave-like structure in the northwestern Tufure sill which has height and wavelength about 102 m and 17 km, respectively. The seismic amplitude in the water column corresponded to the vertical contrast of physical oceanographic parameters such as temperature, salinity, and sound speed. Reflections in the water column could be caused by temperature gradients ranging contrast from 0.03°C/m to >0.20°C/m. The acoustic impedance in the internal wave-like zone was ranging from 0.8 x 106 kg/m3 m/s to 2.06 x 106 kg/m3 m/s. This research revealed that the marine seismic data can be useful for studying the water column characteristics in the Northern Maluku Sea.

References

Buffet, G.G., G. Krahmann, D. Klaeschen, K. Schroeder, V. Sallares, C. Papenberg, & N. Zitellini. 2017. Seimic oceanography in the Tyrrhenian Sea: Thermohaline staircases, eddies, and internal waves. J. Geophysical Research: Oceans, 122: 8503-8523. https://doi.org/10.1002/2017JC012726
Christianson, R. 2015. Seismic reflection imaging of thermohaline fine structures in the Southeast Caribbean Sea: implication for short-term ocean circulation dynamics. [Tesis]. Louisiana (US): Centenary College of Lousiana. 40-51 pp.
Fajaryanti, R., H.M. Manik, & C. Purwanto. 2018. Application of multichannel seismic reflection method to measure temperature in Sulawesi Sea. IOP Conf. Series. Earth Environ. Sci., 176(012044): 1-10. https://doi.org/10.1088/1755-1315/176/1/012044
Jackson, C.R. & J.R. Apel. 2004. An Atlas of internal solitary-like waves and their properties. Global Ocean Associated (GOA). 453-464 pp. https://www.internalwaveatlas.com/Atlas2_PDF/IWAtlas2_Pg453_Indonesia.pdf
Gorman, A.R., R. Vennell, W.S. Holbrook, & R. Frew. 2018. Seismic characterization of oceanic water masses, water mass boundaries and mesoscale eddies SE of New Zealand. J. Geophysical Research: Ocean, 123: 1519-1532. https://doi.org/10.1002/2017JC013459
Holbrook, W.S., P. Páramo, S. Pearse, & R.W. Schmitt. 2003. Thermohaline fine structure in an Oceanographic Front from Seismik Reflection Profiling. J. Science, 301: 821-824. https://doi.org/10.1126/science.1085116
Huang, X., H. Song, L.M. Pinheiro, & Y. Bai. 2011. Ocean temperature and salinity distribution inverted from combined reflection seismic and XBT data. Chinese J. of Geophysics, 54(3): 307-314. https://doi.org/10.1002/cjg2.1613
Manik, H.M. 2011. Underwater Acoustic Detection and Signal Processing Near the Seabed, Sonar System ed. N.Z. Kolev. IntechOpen. 255-374 pp. https://www.intechopen.com/books/sonar-systems/underwater-acoustic-detection-and-signal-processing-near-the-seabed
Manik, H.M. & S. Hadi. 2010. Application of seismic data for seabed imaging. International J. of Remote Sensing and Earth Science, 7: 76-100. https://doi.org/10.30536/j.ijreses.2010.v7.a1545
McTaggart, K.E., G.C. Johnson, M.C.F.H. Delahoyde, & J.H. Swift. 2010. Notes on CTC/O2 Data Acquisition and Processing Using Sea-Bird Hardware and Software (As Available). In, The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1, (eds Hood, E.M., C.L. Sabine, and B.M. Sloyan). 10pp. (IOCCP Report Number 14; ICPO Publication Series Number 134). http://www.go-ship.org/HydroMan.html
Minakov, A., H. Keers, D. Kolyukhin, & H.C. Tangesdal. 2017. Acoustic waveform inversion for ocean turbulence. J. Physical Oceanography, 47(6): 1473-1491. https://doi.org/10.1175/JPO-D-16-0236.1
Nandi, P., W.S. Holbrook, S. Pearse, & P. Paramo. 2004. Seismic reflection imaging of water mass boundaries in the Norwegian Sea. J. Geophys. Res. Lett., 31(L2311): 1-4. https://doi.org/10.1029/2004GL021325
Nugroho, D., A. Koch-Larrouy, P. Gaspar, F. Lyard, G. Reffray & B. Tranchant. 2018. Modelling explicit tide in the Indonesian seas: An important process for surface sea water properties. J. Marine Pollution Bulletin, 131: 7-18. https://doi.org/10.1016/j.marpolbul.2017.06.033
Papenberg, D., C.D. Klaeschen, G. Krahman, & R.W. Hobbs. 2010. Ocean temperature and salinity inverted from combined hydrographic and seismic data. J. Geophysical Research Letters, 37(L04601): 1-6. https://doi.org/10.1029/2009GL042115
Rahma, A., A.S. Atmadipoera, & Y. Naulita. 2020. Water mass along eastern pathway of Indonesia Throughflow from a CTD Argo Float. IOP Conf. Series. Earth Environ. Sci., 429(012003): 1-10. https://doi.org/10.1088/1755-1315/429/1/012003
Ramdhani, H., H.M. Manik, & Susilohadi. 2013. Deteksi dan karakterisasi akustik sedimen dasar laut dengan teknologi seismic dangkal di Perairan Rambat, Bangka Belitung. J. Ilmu dan Teknologi Kelautan Tropis, 5(2): 441-452. https://doi.org/10.29244/jitkt.v5i2.7572
Ruddick, B., H. Song, C. Dong, & L. Pinhero. 2009. Water column seismic images as Temperature Gradients. Oceanography, 22(1): 193-205. https://doi.org/10.5670/oceanog.2009.19
Sallares, V., B. Biescas, G. Buffet, R. Carbonell, J.J. Danobeitia, & J.L. Pelegri. 2009. Relative contribution of temperature & salinity to ocean acoustic reflectivity. J. Geophysical Research Letters, 36(L00D06): 1-6. https://doi.org/10.1029/2009GL040187
Sinha, S.K., P. Dewangan, & K. Sain. 2016. Acoustic reflections in the water column of Krishna-Godavari offshore basin, Bay of Bengal. J. of the Acoustical Society of America, 139(5): 2424-2431. https://doi.org/10.1121/1.4947429
Susanto, R.D., L. Mitnik, & Q. Zheng. 2005. Ocean internal waves observed in the Lombok Strait. Oceanography, 18(4): 81-87. https://doi.org/10.5670/oceanog.2005.08
Tang, Q., R. Hobbs, C. Zheng, B. Biescas, & C. Caiado. 2016. Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data. J. Geophysical Research: Oceans, 121: 1-18. https://doi.org/10.1002/2016JC011810
Wang, L., L. Zhou, L. Xie, Q. Zheng, Q. Li, & M. Li. 2019. Seasonal and interannual variability of water mass sources of Indonesian throughflow in the Maluku Sea and the Halmahera Sea. Acta Oceanologica Sinica, 38(4): 58-71. https://doi.org/10.1007/s13131-019-1413-7
Yilmaz, Q. 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data Vol I, Invest. Geophys 2nd ed. Tulsa (US): Society of Exploration Geophysics. 2080 p.
Zodiatis, G. & G.P. Gasparini. 1996. Thermohaline staircas formations in the Tyrrhenian Sea. J. Deep-Sea Research I, 43(5): 665-678. https://doi.org/10.1016/0967-0637(96)00032-5

Authors

Randi Firdaus
randi_firdaus@apps.ipb.ac.id (Primary Contact)
Henry Munandar Manik
Agus Saleh Atmadipoera
Rina Zuraida
Catur Purwanto
FirdausR., ManikH. M., AtmadipoeraA. S., ZuraidaR., & PurwantoC. (2021). IMAGING THERMOHALINE FINE STRUCTURE USING MULTICHANNEL SEISMIC REFLECTION IN THE NORTHERN MALUKU SEA. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(1), 151-162. https://doi.org/10.29244/jitkt.v13i1.32346

Article Details