Mikroenkapsulasi Oleoresin Bawang Putih Menggunakan Ekstruder Ulir Ganda

Aditya Prayoga, Christofora Hanny Wijaya, Azis Boing Sitanggang


Garlic (Allium sativum) oleoresin is susceptible to damage such as easily volatile and oxidized. It also has low solubility in water. Microencapsulation process is expected to overcome the disadvantages. The aim of this study was to obtain garlic oleoresin microcapsules through twin-screw extrusion process. The study was done by determining the suited carrier, i.e. β-cyclodextrin, dextrin, or maltodextrin, to be used in the microencapsulation of garlic oleoresin, and determining the optimum garlic oleoresin microencapsulation parameters based on response surface methodology (RSM) using the suited carrier. β-cyclodextrin was found to be the suitable carrier for the garlic oleoresin microencapsulation process using a twin-screw extruder. The usage of maltodextrin and dextrin was not possible due to the high viscosity of the mass observed which led to blockage. The modeling obtained through the RSM showed that the combination of the components (carrier, oleoresin, and water) was not ideal for optimum solubility and surface oil. However, the parameters and optimum formula obtained had good experiment repeatability. The optimum garlic powder obtained through the extrusion process showed low surface oil as much as 2.20% and solubility as much as 33.80%. The microencapsulated product exhibited better quality characteristics than commercial K brand spray-dried garlic powder. The extruded powder had nearly four-fold lower aroma intensity prior to dilution, and nearly three-fold higher aroma intensity when diluted in 60°C water.


Avaltroni F, Bouquerand PE, Normand V. 2004. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydr Polym 58: 323-334. https://doi.org/10.1016/j.carbpol.2004.08.001

Balasubramani P, Viswanathan R, Vairamani M. 2013. Response surface optimisation of process variables for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosyst Eng 114: 205-213. https://doi.org/10.1016/j.biosystemseng.2012.12.008

Balasubramani P, Valaniswamy PT, Visvanathan R, Thirupathi V, Subbarayan A, Maran JP. 2015. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. Int J Biol Macromol 72: 210-217. https://doi.org/10.1016/j.ijbiomac.2014.08.011

Benczedi D, Bouquerand P, Firmenich SA, penemu. 2003 Agustus 19. Process for the preparation of granules for the controlled release of volatile compounds. Paten Amerika Serikat US 6.607.7 71B2.

Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C. 2016a. Melt extrusion encapsulation of flavors: A review. Polym Rev 56: 137-186. https://doi.org/10.1080/15583724.2015.1091776

Castro N, Vanessa D, Raynaud C, Roully A. 2016b. Influence of DE-value on the physicochemical properties of maltodextrin for melt extrusion processes. Carbohydr Polym 144: 464-473. https://doi.org/10.1016/j.carbpol.2016.03.004

Castro N, Durrieu V, Raynaud C, Rouilly A. 2020. Twin-screw extrusion encapsulation of MCT-oil in a maltodextrin matrix using compatibilizing biopolymers. Colloids Surf B Biointerfaces 195: 111267. https://doi.org/10.1016/j.colsurfb.2020.111267

Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. 2007. Applications of spray-drying in microencapsulation of food ingredients: An over-view. Food Res Int 40: 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004

Khoshtinat K, Barzegar M, Sahari MA, Hamidi Z. 2016. Comparison of antioxidant and antibacterial activities of free and encapsulated garlic oil with beta-cyclodextrin. Appl Food Biotechnol 3: 254-268. https://doi.org/10.22037/afb.v3i4.12631

Jayanudin, Rochmadi, Wiratni, Yulvianti M, Barleany DR, Ernayati W. 2015. Encapsulation red ginger oleoresin (Zingiber officinale var. Rubrum) with chitosan-alginate as wall material using spray drying. Res J Appl Sci Eng Technol 10: 1370-1378. https://doi.org/10.19026/rjaset.10.1836

Manne ASN, Hegde AR, Raut SY, Rao RR, Kulkarni VI, Mutalik S. 2020. Hot liquid extrusion assisted drug-cyclodextrin complexation: A novel continuous manufacturing method for solubility and bioavailability enhancement of drugs. Drug Deliv Transl Res 11: 1273-1287. https://doi.org/10.1007/s13346-020-00854-w

Marques HMC. 2010. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25: 313-326. https://doi.org/10.1002/ffj.2019

Marreto RN, Cardoso G, do Santos Souza B, Martin-Pastor M, Cunha-Filho M, Taveira SF, Concheiro A, Alvares-Lorenzo C. 2020. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. Int J Pharm 586. https://doi.org/10.1016/j.ijpharm.2020.119510

Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. 2011. An overview of encapsulation technologies for food applications. Procedia Food Sci 1: 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265

Nurhadi B, Roos YH, Maidannyk V. 2016. Physical properties of maltodextrin DE 10: Water sorption, water plasticization and enthalpy relaxation. J Food Eng 174: 68-74. https://doi.org/10.1016/j.jfoodeng.2015.11.018

Rodríguez-Jimenes GC, Páramo-Calderón DE, Wall-Martínez HA, Robles-Olvera VJ, Valerio-Alfaro G, García-Alvarado MA. 2013. Effect of process variables on spray-dried garlic juice quality evaluated by multivariate statistic. Food Bioproc Technol 7: 2434–2442. https://doi.org/10.1007/s11947-014-1311-0

Setyawan D, Wardhana NK, Sari R. 2015. Solubility, dissolution test and antimalarial activity of artesunate nicotinamide co-crystal prepared by solvent evaporation and slurry methods. Asian J Pharm Clin Res 8: 164-166.

Sobel R, Versic R, Gaonkar AG. 2014. Introduction to Microencapsulation and Controlled Delivery in Foods. Di dalam: Gaonkar A, Vasisht N, Khare A, Sobel R, editor. Microencapsulation in the Food Industry. 3-11. San Diego (US): Academic Press. https://doi.org/10.1016/B978-0-12-40456 8-2.00001-7

Sun J, Zhao R, Zeng J, Li G, Li X. 2010. Characterization of destrins with different dextrose equivalents. Molecules 15: 5162-5173. https://doi.org/10.3390/molecules15085162

Tackenberg MW, Krauss R, Schuchmann HP, Kleinebudde P. 2015. Encapsulation of orange terpenes investigating a plasticisation extrusion process. J Microencapsulation 32: 1-10. https://doi.org/10.3109/02652048.2015.1035686

Thiry J, Krier F, Ratwatte, Thomassin J-M, Jerome, Evrard B. 2017. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci 96: 590-597. https://doi.org/10.1016/j.ejps.2016.09.032

Vishnupriya R, Priya B, Sundaram U. 2012. Studies on antibacterial effect of spray dried micro-encapsulated garlic (Allium sativum L.) oleoresin powder. Int J Medicobiol Res 1: 342-344.

Wijaya CH, Herman E, Wardoyo R, penemu; Institut Pertanian Bogor. 2008 April 02. Formulasi bumbu bubuk bawang putih siap pakai dan proses pembuatannya. Paten Indonesia ID 00200100568.

Yu J, Castada HZ, Huang X, Barringer SA. 2018. Comparison of encapsulation of garlic oil with α-, β-, and γ-cyclodextrin using selected ion flow tube-mass spectrometry (SIFT-MS). J Food Process Preserv 43: e13865. https://doi.org/10.1111/jfpp.13865

Yuliani S, Torley PJ, Bhandari B. Mikroenkapsulasi d-limonen untuk perisaan produk ekstrusi. J Teknologi Industri Pertanian 17: 54-60.

Zhang X, Cresswell M. 2016. Inorganic Controlled Release Tecnology: Materials and Concepts for Advanced Drug Formulation. 17-55. Butterworth- Heinemann, Kidlington, Oxford. https://doi.org/10.1016/B978-0-08-099991-3.00002-8

Zhou G, Zhao T, Wan J, Liu C, Liu W, Wang R. 2015. Predict the glass transition temperature and plasticization of β-cyclodextrin/water binary system by molecular dynamics simulation. Carbohydr Res 401: 89-95. https://doi.org/10.1016/j.carres.2014.10.026


Aditya Prayoga
Christofora Hanny Wijaya
channywijaya@apps.ipb.ac.id (Primary Contact)
Azis Boing Sitanggang
PrayogaA., WijayaC. H., & SitanggangA. B. (2023). Mikroenkapsulasi Oleoresin Bawang Putih Menggunakan Ekstruder Ulir Ganda. Jurnal Teknologi Dan Industri Pangan, 34(2), 224-232. https://doi.org/10.6066/jtip.2023.34.2.224
Copyright and license info is not available

Article Details