Deteksi dan Identifikasi Molekuler Kapang Berpotensi sebagai Penghasil Patulin pada Buah Tropis

Ratih Paramastuti, Winiati Pudji Rahayu, Siti Nurjanah

Abstract

Production and export of tropical fruits in Indonesia have an increasing trend every year. The important factor in the production and export of fruits is food safety. One of the contaminants that may be found in fruits is mycotoxin, especially patulin. Patulin mainly found in fruits such as apple, orange, grape, and pear. This study aimed to detect molds from tropical fruits and to identify potentially patulin-producing molds. Detection of potentially patulin-producing molds obtained from tropical fruits was carried out using the isoepoxydon dehydrogenase (idh) gene. Species identification was carried out using internal transcribed spacer (ITS) region. The mold isolate sequences of ITS rDNA region were analyzed for their homology using both BLAST search and phylogenetic tree. A total of 26 molds were isolated from four types of fruit (malang apple, ambon banana, medan orange, and avocado) obtained from five different places in Bogor including fruit stalls, traditional markets, and supermarkets. The positive results of idh gene were mold isolates that have an amplicon at 620 bp. The result showed that 5 of 26 (19,2%) isolates were positive for idh gene, namely A11, A34, A43, A51 and B23. The positive isolates for idh gene were identified as Aspergillus aculeatus, Aspergillus niger, Cladosporium anthropophilum, Cladosporium tenuissimum, and Talaromyces verruculosus.

References

Alshannaq A, Yu JH. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14: 632. https://doi.org/10.3390/ijerph14060632

Alwatban MA, Hadi S, Moslem MA. 2014. Mycotoxin production in Cladosporium species influenced by temperature regimes. J Pure Appl Microbiol 8: 4061–4069.

[BPOM] Badan Pengawas Obat dan Makanan. 2018. Peraturan Badan Pengawas Obat dan Makanan Nomor 8 Tahun 2018 Tentang Batas Maksimum Cemaran Kimia dalam Pangan Olahan. Badan Pengawas Obat dan Makanan, Jakarta.

Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA. 2017. Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8: 48–57. https://doi.org/10.1080/21501203.2017.1302013

De Clercq N, Vlaemynck G, Van Pamel E, Van Weyenberg S, Herman L, Devlieghere F, De Meulenaer B, Van Coillie E. 2016. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere. Int J Food Microbiol 220: 50–57. https://doi.org/10.1016/j.ijfoodmicro.2016.01.004

Cunha SC, Faria MA, Pereira VL, Oliveira TM, Lima AC, Pinto E. 2014. Patulin assessment and fungi identification in organic and conventional fruits and derived products. Food Control 44: 185–190. https://doi.org/10.1016/j.foodcont.2014.03.043

Dombrink-Kurtzman MA. 2006. The isoepoxydon dehydrogenase gene of the patulin metabolic pathway differs for Penicillium griseofulvum and Penicillium expansum. Antonie van Leeuwen-hoek 89: 1–8. https://doi.org/10.1007/s10482005-9002-5

Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. 2020. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited “FAO estimate” of 25%. Crit Rev Food Sci Nutr 60: 2773–2789. https://doi.org/10.1080/10408398.2019.1658570

Farwell LH, Deakin G, Harris AL, Fagg G, Passey T, Verheecke-Vaessen C, Magan N, Xu X. 2023. Cladosporium species: The predominant species present on raspberries from the UK and Spain and their ability to cause skin and stigmata infections. Horticulturae 9: 128. https://doi.org/10.3390/horticulturae9020128

Frisvad JC. 2018. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J 11: 73–100. https://doi.org/10.3920/WMJ2017.2294

Hammami W, Al-Thani R, Fiori S, Al-Meer S, Atia FA, Rabah D, Migheli Q, Jaoua S. 2017. Patulin and patulin producing Penicillium spp. Occurrence in apples and apple-based products including baby food. J Infect Dev Ctries 11: 343–349. https://doi.org/10.3855/jidc.9043

Holm DK, Petersen LM, Klitgaard A, Knudsen PB, Jarczynska ZD, Nielsen KF, Gotfredsen CH, Larsen TO, Mortensen UH. 2014. Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem Biol 21: 519–529. https://doi.org/10.1016/j.chembiol.2014.01.013

Ioi JD, Zhou T, Tsao R, Marcone MF. 2017. Mitigation of patulin in fresh and processed foods and beverages. Toxins 9: 157. https://doi.org/10.3390/toxins9050157

[Kementan] Kementerian Pertanian. 2018. Statistik Konsumsi Pangan Tahun 2018. Kementerian Pertanian, Jakarta.

[Kementan] Kementerian Pertanian. 2019. Produksi Buah-Buahan di Indonesia Tahun 2014-2018. Kementerian Pertanian, Jakarta.

Lamboni Y, Nielsen KF, Linnemann AR, Gezgin YK, Hell K, Nout MJR, Smid EJ, Tamo M, van Boekel MAJS, Hoof JB, Frisvad JC. 2016. Diversity in secondary metabolites including mycotoxins from strains of Aspergillus section nigri isolated from raw cashew nuts from Benin, West Africa. PLoS One 11: e0164310. https://doi.org/10.1371/journal.pone.0164310

Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Ávila JA, López-Guerrero JA, Aguilar-Quesada R. 2016. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Bio-bank 14: 264–270. https://doi.org/10.1089/bio.2015.0064

Luque MI, Andrade MJ, Rodríguez A, Bermúdez E, Córdoba JJ. 2013. Development of a multiplex PCR method for the detection of patulin-, ochratoxin A- and aflatoxin-producing moulds in foods. Food Anal Methods 6: 1113–1121. https://doi. org/10.1007/s12161-012-9516-1

Luque MI, Rodríguez A, Andrade MJ, Gordillo R, Rodríguez M, Córdoba JJ. 2011. Development of a PCR protocol to detect patulin producing moulds in food products. Food Control 22: 1831–1838. https://doi.org/10.1016/j.foodcont.2011.04.020

Nam MH, Park MS, Kim HS, Kim TI, Kim HG. 2015. Cladosporium cladosporioides and C. tenuissimum cause blossom blight in strawberry in Korea. Mycobiology 43: 354–359. https://doi.org/10.5941/MYCO.2015.43.3.354

Navale V, Vamkudoth KR, Ajmera S, Dhuri V. 2021. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 8: 1008–1030. https://doi.org/10.1016/j.toxrep.2021.04.013

Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, Frisvad JC, Workman M, Nielsen J. 2017. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2: 17044. https://doi.org/10.1038/nmicrobiol. 2017.44

Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC. 2009. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395: 1225–1242. https://doi.org/10.1007/s00216-009-3081-5

Notardonato I, Gianfagna S, Castoria R, Ianiri G, De Curtis F, Russo MV, Avino P. 2021. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev Anal Chem 40: 144–160. https://doi.org/10.1515/re vac-2021-0131

Ortega-Acosta SA. Reyes-García G, Vargas-Álvarez D, Gámez-Vázquez AJ, Ávila-Perches MA, Espinosa-Trujillo E, Bello-Martínez J, Damián-Nava A, Palemón-Alberto F. 2018. First report of Talaromyces verruculosus causing storage rot of groundnut in Mexico. New Dis Rep 38: 27. https://doi.org/10.5197/j.2044-0588.2018.038.027

Oteiza JM, Khaneghah AM, Campagnollo FB, Granato D, Mahmoudi MR, Sant’Ana AS, Gianuzzi L. 2017. Influence of production on the presence of patulin and ochratoxin A in fruit juices and wines of Argentina. LWT–Food Sci Technol 80: 200–207. https://doi.org/10.1016/j.lwt.2017.02.025

Paterson RRM. 2004. The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycol Res 108: 1431–1437. https://doi.org/10.1017/S095375620400142X

Paterson RRM. 2007. The isoepoxydon dehydrogenase gene PCR profile is useful in fungal taxonomy. Rev Iberoam Micol 24: 289–293.

Petersen LM, Hoeck C, Frisvad JC, Gotfredsen CH, Larsen TO. 2014. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 19: 10898–10921. https://doi.org/10.3390/molecules190810898

Petersen LM, Holm DK, Gotfredsen CH, Mortensen UH, Larsen TO. 2015. Investigation of a 6-MSA synthase gene cluster in Aspergillus aculeatus reveals 6-MSA-derived aculinic acid, aculins A-B and epiaculin A. Chem Bio Chem 16: 2200–2204. https://doi.org/10.1002/cbic.201500210

Paramastuti R, Rahayu WP, Nurjanah S. 2021. Patulin-producing mold, toxicological, biosynthesis, and molecular detection of patulin. Adv Food Sci Sustain Agric Agroind Eng 4: 93–109. https://doi.org/10.21776/ub.afssaae.2021.004.02.3

Raja HA, Miller AN, Pearce CJ, Oberlies NH. 2017. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80: 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085

Rharmitt S, Hafidi M, Hajjaj H, Scordino F, Giosa D, Giuffre L, Barreca D, Criseo G, Romeo O. 2016. Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco. Int J Food Microbiol 217: 137-140. http://doi.org/10.1016/j.ijfoodmicro.2015.10.019

Rodríguez A, Isabel Luque M, Andrade MJ, Rodríguez M, Asensio MA, Córdoba JJ. 2011. Development of real-time PCR methods to quantify patulin-producing molds in food products. Food Microbiol 28: 1190–1199. https://doi.org/10.1016/j.fm.2011.04.004

Rodríguez A, Rodríguez M, Andrade MJ, Córdoba JJ. 2012. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods. Int J Food Microbiol 155: 10–18. https://doi.org/10.1016/j.ijfoodmicro.2012.01.007

Salvatore MM, Andolfi A, Nicoletti R. 2021. The genus cladosporium: A rich source of diverse and bioactive natural compounds. Molecules 26: 1-45. https://doi.org/10.3390/molecules26133959

Snini SP, Tadrist S, Laffitte J, Jamin EL, Oswald IP, Puel O. 2014. The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a 6-methylsalicylic acid decarboxylase. Int J Food Microbiol 171: 77–83. https://doi.org/10.1016/j.ijfoodmicro.2013.11.020

Tannous J, Atoui A, El Khoury A, Kantar S, Chdid N, Oswald IP, Puel O, Lteif R. 2015. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiol 50: 28–37. https://doi.org/10.1016/j.fm.2015.03.001

Tola M, Kebede B. 2016. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric 2: 1-12. https://doi.org/10.1080/2331 1932.2016.1191103

Vidal A, Ouhibi S, Ghali R, Hedhili A, Saeger SD, Boevre MD. 2019. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol 129: 249–256. https://doi.org/10.1016/j.fct.2019.04.048

Zhai MM, Li J, Jiang CX, Shi YP, Di DL, Crews P, Wu QX. 2016. The bioactive secondary metabolites from Talaromyces species. Nat Prod Biopros pect 6: 1–24. https://doi.org/10.1007/s13659-015-0081-3

Zhang X, Li Y, Wang H, Gu X, Zheng X, Wang Y, Diao J, Peng Y, Zhang H. 2016. Screening and identification of novel ochratoxin A-producing fungi from grapes. Toxins (Basel) 8: 1-14. https://doi.org/10.3390/toxins8110333

Zhang M, Tang J, Huang Z, Hu K, Li Y, Han Z, Chen X, Hu L, Yao G, Zhang H. 2018. Deletion of catalase gene cpeB reduces Aspergillus niger virulence in apple fruits. J Agric Food Chem 66: 5401–5409. https://doi.org/10.1021/acs.jafc.8b01841

Authors

Ratih Paramastuti
Winiati Pudji Rahayu
wpr@apps.ipb.ac.id (Primary Contact)
Siti Nurjanah
ParamastutiR., RahayuW. P., & NurjanahS. (2023). Deteksi dan Identifikasi Molekuler Kapang Berpotensi sebagai Penghasil Patulin pada Buah Tropis. Jurnal Teknologi Dan Industri Pangan, 34(2), 127-141. https://doi.org/10.6066/jtip.2023.34.2.127
Copyright and license info is not available

Article Details