PHOSPHORUS SORPTION KINETIC ON ACID UPLAND SMECTITIC SOIL AMENDED WITH CALCIUM CARBONATE AND CALCIUM SILICATE

Arief Hartono

Department of Soil Science and Land Resource, Faculty of Agriculture, Bogor Agricultural University Jalan Meranti, Kampus IPB Darmaga 16680

ABSTRACT

Acid upland smectitic soil is identified by high amount of exchangeable Al due to the weathering of aluminum (Al) octahedral layer by H^+ saturation and by very low phosphorus (P) status. Calcium carbonate (CaCO3) and calcium silicate (CaSiO3) were commonly used to decrease exchangeable Al and increase soil pH. Laboratory experiments were conducted with clayey smectitic Typic Paleudults from Gajrug region, West Java. The CaCO3 and CaSiO3 were added at rates to replace 0, 1.5 or 3 times of exchangeable Al. After one month of incubation, P sorption kinetic experiments were conducted. The changes in some chemical properties after one month incubation showed that both CaCO3 and CaSiO3 increased the soil pH, exchangeable Ca, and base saturation but did not increase the cation exchange capacity. The results of the experiment showed that both CaCO3 and CaSiO3 decreased the rate constant value of first order kinetic equation (k) and the P sorbed maximum (a) at given amount of added P compared to Control. The CaCO3 was better than CaSiO3 in decreasing k values and on the contrary for a values. The decrease in P maximum sorption and the rate constant of the soil amended with CaSiO3 and CaCO3 due to occupation of P sorption sites by silicates and hydroxyl ions. The CaCO3 with the rate to replace 1.5 x exchangeable Al was recommended to decrease the rate constant of P sorption. However, the CaSiO3 at the rate to replace 3 x exchangeable Al was recommended to decrease the maximum P sorption.

Key words: Acid Smectitic Soil, Lime, P- sorption Kinetic, Silicate

INTRODUCTION

Acid upland smectitic soils in tropical region are generally high in exchangeable aluminum (Al), deficient in phosphorus (P) and sorb large quantity of this element. Liming using calcium carbonate (CaCO₃) and calcium silicate (CaSiO₃) is frequently used to raise soil pH and increase phosphorus bioavailability (Sanchez and Uehara, 1980). However the use of liming materials are controversial concerning P sorption experiments. Several authors reported that liming decreases P sorption (Smyth and Sanchez, 1980; Haynes, 1982; Anjos and Rowel, 1987; Naidu *et al.*, 1990; Hartono, 2008). Other studies reported that liming increase P sorption (Chen and Barber, 1990) and others have shown no significant influence (Arias and Fernandez, 2001).

The decrease in P sorption caused by liming were reported due to the increase in hydroxyl ion concentration. The increase in hydroxyl ion concentration increased competition between hydroxyl and P for specific adsorption site on mineral surface (Anjos and Rowel, 1987; Smyth and Sanchez, 1980). Other scientific reason was that hydroxyl ion reacts with aluminum (Al) ion and hydroxyl-Al ion forming Al-hydroxides therefore decreasing the number of P sorption sites (Naidu *et al.*, 1990). Furthermore Haynes (1982) explained that the mineral surface became increasingly negative with increasing pH resulting in greater electrostatic repulsion and decreased P sorption.

Concerning the pH, Chen and Barber (1990) reported that when the pH of acid weathered soils were uplifted from pH 4.2 to pH 8.3 increased sorbed P up to pH of about 6.0. However at pH higher than 6.0 decreased

P sorption. The initial increase in P sorption was explained due to formation of amorphous hydroxyl Al with highly active sorbing surfaces. The decrease in P sorption at pH higher than 6.0 was attributed to increased competition of hydroxyl with phosphate for sorption sites.

Few studies have focused on P sorption kinetic on acid upland smectitic soils. The exchangeable Al of these soil are very high due to the weathering of Al octahedral layers by H^+ . These soils also have very low soil P status. Phosporus management is very important concerning uplifting the soil fertility. Liming is one of the management to uplift soil fertility. Materials for liming are usually $CaCO_3$ and $CaSiO_3$.

The objective of this study was to evaluate the P sorption kinetic in acid upland smectitic soil amended with CaCO_3 and CaSiO_3 .

MATERIALS AND METHODS

Soil samples. Soil samples of surface horizon of cultivated clayey smectitic Typic Paleudult from Gajrug West Java were collected. The coordinates of sampling site were S 06^o 30' 43.3" and E 106^o 22' 49.4" with an elevation of 210 m above sea level. Soil samples were airdried and crushed to pass through a 2-mm mesh sieve.

Methods of initial soil analyses. Soil pH was measured in a 1:1.5 (w/v) water solution using a pH meter. Clay content was determined with pipet method. Clay minerals were identified by X-ray diffraction analysis (Rigaku RAD-2RS Diffractometer). The content of organic carbon (C) in soil was measured with a NC Analyzer (Sumigraph NC analyzer NC-800-13 N, Sumika Chem. Anal. Service). Available P content was obtained

by the Bray 1 method (Bray and Kurtz, 1945) while total P was determined by digesting the soil sample using concentrated percloric acid and nitric acid as described by Kuo (1996). Their absorbance at 693 nm was determined using a UV-VIS Spectrophotometer (UV-1200, Shimadzu Corporation, Japan). Cation Exchange Capacity (CEC) was obtained by extraction with 1 mol L⁻¹ NH₄OAc pH 7.0 and the contents of exchangeable bases calcium (Exch. Ca) and magnesium (Exch. Mg) were determined by Atomic Absorption Spectrophotometry (AA-640-12, Shimadzu Corporation, Japan) while those of exchangeable potassium and sodium were determined by flame emission spectrophotometry (AA-640-12, Shimadzu Corporation, Japan). Base saturation was defined as the ratio of total exchangeable bases to CEC, expressed as a percentage. Exchangeable Aluminum (Al) was extracted with 1 mol L ¹ KCl.

The contents of oxalate-extractable Fe and Al $(Fe_o \text{ and } Al_o)$ were obtained by extraction with 0.3 mol L^{-1} ammonium oxalate, at pH 3 for 4 hours in a dark room (McKeague and Day, 1966). Extracted Fe and Al of Al_o and Fe_o were filtered through a syringe filter with a 0.45 μ m pore size (Minisart RC 15, sartorius, Hannover, Germany). Contents of extracted Fe and Al were then determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy (SPS1500, SEIKO).

Incubation experiment. 300 g (oven-dry weight) soil was put into a plastic pot and incubated with CaSiO₃ or CaCO₃ where both of them were grade laboratory for one month. A completely randomized design in double replication was set up. The experiment consisted of 3 levels of calcium silicate or CaCO₃ to replace 0, 1.5 or 3 x exchangeable Al. Deionized water was added to the pots to maintain the soil moisture around 85 % of field capacity every second day gravimetrically. After the period of incubation, the soil samples were airdried.

Phosporus a sorption kinetic experiment. Duplicates of 3 g samples (< 2 mm) were equilibrated in 30 mL of 0.01 mol L⁻¹ CaCl₂ containing 50 mg P L⁻¹ as KH₂PO₄. Two drops of toluene were added to suppress the microbial activity. The suspension was shaken for 1 minute (mint), 5 mint, 10 mint, 15 mint, 20 mint, 30 mint, 1 hour (h), 3 h, 6 h and 48 h. As in P sorption experiment, in the end of the shaking period, the soil suspensions were centrifuged at 2500 rpm for 15 minutes and filtered (filter paper No. 6, Advantec Toyo, Tokyo, Japan). Phosporus content in the supernatant solution was determined by the procedure of Murphy and Riley (1962). The absorbance at 693 nm was determined using a **UV-VIS** spectrophotometer (UV-1200, Shimadzu Corporation, The amount of P sorbed by the soils was calculated as the difference between the amount of P

added and the amount remaining in solution. Phosporus sorption kinetic experiments were conducted at 25° C.

For describing the P sorption kinetic, the data was fitted to first order kinetic equation as below.

P sorbed = $a (1-e^{-kt})$

where the constant a is the P sorbed maximum at given amount of P added in mg kg⁻¹, k in h⁻¹ is the rate constant of P sorption and t in h is shaking period.

Statistical analyses. Analyses of variance followed by a Tukey's test were applied to evaluate the effect of calcium silicate to the parameters. SYSTAT 8.0 was used for the statistic analyses (SPSS Inc. 1998).

RESULTS AND DISCUSSION

Physicochemcal Properties of Soil

The physicochemical properties of the Gajrug soil are presented in Table 1. The values were judged using criteria published by Soepratohardjo (1983). Soil was very acid with very high exchangeable Al. The value of the exchangeable Al was very high (24.4 cmol_c kg⁻¹) compared to the others acid upland soils. This was because of the replacement of Al in the octahedral with H⁺ of clay minerals smectite. This replacement resulted in high exchangeable Al. The clay mineral analyses of the Gajrug soil is presented in Figure 1. Figure 1 showed that its characteristics XRD pattern was smectite. Smectite had very short time for Al replacement with H⁺ (Bohn et al., 1985). The Cation Exchange Capacity (CEC) of the Gajrug soil was vey high. It is understandable that gajrug soil had high clay content (65 %) with smectite in its clay minerals. CEC was very related to clay content and kind of clay minerals (Hartono et al., 2005).

The available P (Bray-1 P) and total-) were low. The available P was about $5.65~\text{mg kg}^{-1}$ and the total-P was $375~\text{mg kg}^{-1}$. The low P contents were due to low application of P fertilizer. The Ca content was low while Mg and K contents were medium. The base saturation of this soil was very low. C-organic and N-total were medium.

Judging from the exchangeable Al and P content of this soil, efforts concerning to find suitable amendment to decrease exchangeable Al and uplift in the P contents were necessary.

The Change in Some Selected Chemical Properties of the Soil after Incubation

The changes in pH, exchangeable Al, CEC, bases (Ca, Mg, K and Na) and base saturation are presented in Table 2. Soil pH increased two to three unit reaching the neutral point after incubation by $CaCO_3$ and $CaSiO_3$. All rates of $CaCO_3$ and $CaSiO_3$ decreased exchangeable Al.

Table 1. Physicochemical properties of the soil sample.

Physicochemical properties	value	status		
pH H ₂ O (1:1.5)	4.24	very acid		
pH KCl (1:1.5)	3.80	-		
Organic C (%)	2.52	medium		
N-total (%)	0.22	medium		
Clay content (%)	70.0	-		
CEC (cmol _c kg ⁻¹)	40.3	very high		
Ca ²⁺ (cmol _c kg ⁻¹)	4.29	low		
Mg^{2+} (cmol _c kg ⁻¹)	1.05	medium		
$K^+ (cmol_c kg^{-1})$	0.51	medium		
Na ⁺ (cmol _c kg ⁻¹)	0.18	low		
Base saturation (%)	15.0	Very low		
Exchangeable Al (cmol kg ⁻¹)	24.4	-		
Al saturation (%)	80.2	very high		
Bray-1 P (mg kg ⁻¹)	5.65	low		
Total-P (mg kg ⁻¹)	375	low		
Phyrophosphate:				
$Al(Al_p)$	4.97	-		
Fe (Fe _p)	4.15	-		
Oxalate:				
Al (Al _o)	6.38	-		
Fe (Fe _o)	9.11	-		
Dithionite-Citrate-Bicarbonate (DCB):				
$Al(Al_d)$	8.67	-		
Fe (Fe _d)	29.2	-		
Clay (%)	65.0			

Tabel 2. Some chemical properties after one month incubation.

_	pH H ₂ O	Exch. Al	CEC
-		cmol	kg-1
Without			
treatment	4.73a	24.7	40.3a
CaCO ₃ level 1.5	6.38b	nd	38.6a
CaCO ₃ level 3	7.69c	nd	39.8a
CaSiO ₃ level 1.5	5.82b	nd	40.4a
CaSiO ₃ level 3	7.60c	nd	43.8a

Nd: not detectable

The CEC was not affected because the negative charges in soil was from isomorphic substitution. As shown in Figure 1, only smectite was the soil clay mineral. The negative charge of smectite was from isomorphic substitution so the changes in pH even to neutral point did not affect the CEC values. From the changes of some selected chemical properties, the application of $CaCO_3$ or $CaSiO_3$ to replace 1.5 x exchangeable Al were sufficient to improve those chemical properties.

Phosporus Sorption Kinetic Parameters

The amount of P sorbed by the soil samples in relation to shaking period is presented in Table 3 and in Figure 2. The data were simulated and fitted to first order

kinetic equation. The parameters of first order kinetic equation are presented in Table 4. The parameters of k and a are the rate constant of P sorption and P sorbed maximum at given amount of added P respectively.

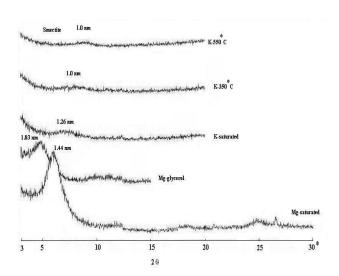


Figure 1. Identification of Smectite using its characteristic XRD pattern of soil samples.

Table 3.	Phosporus	sorbed	with	Shaking	period.
racic 3.	THOSPOTUS	501000	*****	Dilaiting	periou.

	Shaking Period									
	0.02 h	0.08 h	0.17 h	0.25 h	0.33 h	0.50 h mnt	1 h	3 h	6 h	48 h
Treatment	P sorbed (mg kg ⁻¹)									
Without treatment	552	551	556	560	555	558	562	565	566	567
CaCO ₃ level 1.5	506	513	525	556	537	543	553	560	562	565
CaCO ₃ level 3	512	524	532	554	542	548	555	561	562	565
CaSiO ₃ level 1.5	518	500	498	543	518	531	544	549	556	563
CaSiO ₃ level 3	481	451	452	503	475	495	514	532	533	552

h : hour

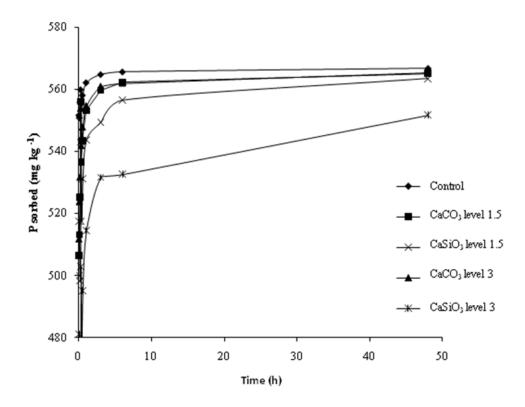


Figure 2. Phosporus sorption kinetic by soil samples at 25 $^{\circ}$ C

As shown in Table 3 and Figure 2 P sorption was very fast. The added P in this P sorption kinetic experiment was 50 mg P L⁻¹ or equivalent with 579 mg P kg⁻¹. For sample without liming, in one minute, about 95 % of added P was sorbed. In one minute in soil samples treated with CaCO3, P sorbed were decreased to 88 % and 89 % by rate of $CaCO_3$ to replace 1.5 x exchangeable Al and 3 x exchangeable Al respectively. Meanwhile in soil samples treated with CaSiO₃, P sorbed were decreased to 89 % and 83 % by rate of CaSiO₃ to replace 1.5 x exchangeable Al and 3 x exchangeable respectively. Application of CaSiO₃ to replace 3 x exchangeable Al was more promising to decrease the amount of P sorbed by the soil. The lower P sorbed values on the samples treated by calcium silicate with the rate to replace 3 x exchangeable Al constantly showed in each shaking period.

The k value which refers to the rate constant of sorption of soil sample treated by $CaCO_3$ and $CaSiO_3$ was statistically significantly lower than that of control (Table 4). As for comparison between $CaCO_3$ and $CaSiO_3$, $CaCO_3$ decreased the k values of P sorption lower than

those of CaSiO₃. The rate of CaCO₃ to replace 1.5 exchangeable Al was lower significantly than those of CaSiO₃.

Table 4. The parameters of the equation of the first order kinetic.

Treatment	k	а	R ² value of the equation
	\mathbf{h}^{-1}	$(mg P kg^{-1})$	•
Without treatment	4.17a	567a	0.99
CaCO ₃ level 1.5	2.60b	566b	0.99
CaCO ₃ level 3	2.70bc	566c	0.99
CaSiO ₃ level 1.5	3.49d	562d	0.98
CaSiO ₃ level 3	3.20e	550e	0.96

Means followed by the same letter within a column are not significantly different (Tukey's test, P < 0.05)

Concerning the a values which refers to the P sorbed maximum, both $CaCO_3$ and $CaSiO_3$ decreased the value significantly. However, the increasing rates of $CaSiO_3$ decreased the a value lower than those of $CaCO_3$.

From the P sorption kinetic experiment, it is suggested that silicate and hydroxyl ions occupied the sorption sites competing with P ions. Hydroxyl ions were from reaction between silicate ions and hydrogen ions

forming weak silicate acid. This reaction was indicated by increase in soil pH. As the results, the P sorbed maximum of the soil was decreased and also the rate constant of P sorption. As for treatment with CaCO₃, reaction between bicarbonate ions and hydrogen ions forming weak carbonate acid contributed to the increase of hydroxil ions. These hydroxyl ions competed with P to the sorption sites (Anjos and Rowel, 1987; Smyth and Sanchez, 1980). The possibility that the decreased P sorbed maximum and rate constant of P sorption because of the increase in negative charges due to increased pH was not supported by the obtained CEC data. CEC did not increase with the increasing rates of CaCO₃.

CONCLUSION

Application of CaSiO₃ and CaCO₃ decreased P sorbed maximum and the rate constant of the smectitic soil contanining high exchangeable Al. The decrease in P sorbed maximum and the rate constant of the soil amended with CaSiO₃ and CaCO₃ were due to occupation of P sorption sites by silicates and hydroxyl ions.

 $CaCO_3$ with the rate to replace 1.5 x exchangeable Al was recommended to decrease the rate constant of P sorption. However, $CaSiO_3$ with the rate to replace 3 x exchangeable Al was recommended to decrease the P sortion maxima.

ACKNOWLEDGMENTS

I thank the farmers in Gajrug, West Java, for their assistance in the collection of the soil samples. I also thank Laboratory of Soil Science Graduate School of Agriculture, Kyoto University for providing materials and instruments for analyses.

REFERENCES

- Anjos JT, Rowell DL. 1987. The effect of lime on phosphorus adsorption and barley growth in three acid soils. *Plant soil*, 103: 75-82.
- Arias JS, Fernandez PG. 2001. Changes in phosphorus adsorption in Palexerult amended with limestone and/or gypsum. *Comm. Soil Sci. Plant Anal.*, 32:751-758.
- Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. *Soil Sci.*, 59: 39-45.
- Chen J, Barber SA. 1990. Effect of liming and adding phosphate on predicted phosphorus uptake by

- maize on acid soils of three soil orders. *Soil Sci.*, 150:844-850.
- Hartono A. 2008. The effect of calcium silicate on the phosphorus sorption characteristics of Andisol Lembang West Java. *J. Tanah Lingk.*, 10:14-19.
- Hartono A, Funakawa S, Kosaki T. 2005. Phosphorus sorption-desorption characteristics of selected acid upland soils in Indonesia. *Soil Sci. Plant Nutr.*, 51, 787-799.
- Haynes RJ. 1982. Effects of liming on phosphate availability in acid soil A critical review. *Plant Soil*, 28:244-252.
- Kuo S. 1996. Phosphorus. In: D. L. Spark, A. L. Page, P.
 A. Helmke, R. H. Loeppert, P. N. Soltanpour, M.
 A. Tabatai, C. T. Johnston, and M. E. Sumner,
 (eds.), Methods of Soil Analyses Part 3 Chemical
 Methods. ASA and SSSA, Madison, WI. 869-919.pp.
- McKeague JA, Day JH. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. *Can. J. Soil Sci.*, 46:13-22.
- Murphy J, Riley JP. 1962. A modified single solution method for determination of phosphate in natural waters. *Anal. Chim. Acta.*, 27: 31-36.
- Naidu R, Syers JK, Tillman RW, Kirkman JH. 1990. Effect of liming on phosphate sorption by acid soils. *J. Soil Sci.*, 41:165-175.
- Sanchez PA, Uehara G. 1980. Management considerations for acid soils with high phosphorus fixation capacity. *In F. E. Khasawneh* (ed.). The Role of Phosphorus in Agrculture. Madison, ASA. p. 471-514.
- Smyth TJ, Sanchez PA. 1980. Effect of lime, silicate and phosphorus application to an phosphorus sorption and ion retention. *Soil Sci. Soc. Am. J.*, 44:500-505.
- Soepratohardjo M, Subagjo, Suhardjo H, Ismangun, Marsoedi D. S, Hidayat A, Dai Y, Adi A, Supartini M, Mursidi, Adiningsih JS. 1983. Terms of Reference Survai Kapabilitas Tanah. Pusat Penelitian Tanah. Bogor.
- SPSS Inc. (1998) SYSTAT 8.0 Statistics. 1086pp.