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ABSTRACT 

 

Tropical peatland forests in Indonesia are facing a lot of pressure, resulting increased deforestation and degradation of 

intact forests. Both natural and anthropogenic cause of changes – concentrated  in Sumatra and Kalimantan, Indonesia – 

has been reported as 3.4% y-1 from 1990 – 2010. Currently, only ~ 41% to 44% of the original peatland forests of 

Kalimantan left. As a result of both changes, degraded peatlands have altered their balance on their natural conditions and 

roles, since degradation of forest cover is often a complex process with their own of ecological recovery. A study has 

been executed to explore the effect of forest degradation on forest structure and their biomass allocation in coastal 

peatland forest of Kubu Raya, West Kalimantan. Forty eight of a 50 x 50 m sized plots with variety of degradation level 

were assessed for their tree structure, density, stand biomass, and basal area and compared. Results show that forest 

degradation shifted tree diameter 10-20 cm dominance on their biomass stocks to larger trees (>20 cm) and smaller one 

(5-10 cm). Forest structure seems in a good and normal shape from small tree to large one. It is indicated that high 

degraded forest demonstrate a decline its biomass allocation, tree density per hectare, basal area on each level of forest 

structures.  
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INTRODUCTION 
 

Land use and land cover changes by forest 

degradation or clearing tropical forest for conversion or 

expanding urban development, are often disturbing 

ecosystem functions and degrading environmental 

conditions (Achard et al. 2002) (Foley et al. 2005) 

(Miettinen et al. 2011) and, consequently, they result in 

major contributions to global greenhouse gas emissions 

(Soares et al. 2006) (DeFries et al. 2007) (Skutsch et al. 

2007). The increased of forest degradation and forest 

land conversion to agricultural lands or urban areas 

accelerates this release of organic carbon to the 

atmosphere (Mitra et al. 2005). In addition, land use 

change will also impact and alter terrestrial ecosystem 

processes (Miettinen and Liew 2011). 

Peatland forest is one of forest types in tropical area 

that is also in huge pressures. (Margono et al. 2012) 

reported during the last two decades of 1990-2010 there 

was 7.54 Mha forests were changed and and additional 

2.31 Mha were degraded. The increasing scarcity of 

available land resources in mineral soils, advanced land 

conversion technology and continuously rising demand 

for forest and agricultural products have led to a rapid 

increase in peatland conversion and degradation. 

Hoojiers et al. (2010) and Couwenberg et al. (2010) 

stated that those activities significantly increase carbon 

emissions, yet also disturb ecosystem functions 

invariably, both directly because of reduction of forest 

density and acceleration in peat oxidation and indirectly 

by making the ecosystems more vulnerable to yearly fire 

activity (Curran et al. 1999) (Siegert et al. 2001). 

There are numerous functions of tropical peatlands 

ranging from regulation of water flow to providing 

refuge for endangered animal species (Rieley and Page 

2005). However, the impacts of forest degradation on 

peatland forest in-situ condition such as forest structure 

and composition and their roles in maintaining carbon in 

their biomass are not stated clearly and how this 

condition affect the process within the forest changes is 

interesting to be investigated. It was reported that 

observation on tree canopy with Geoscience Tree 

Altimeter System found a significant structural 

difference between primary intact and primary degraded 

forests (Margono et al. 2012).  Increasing forest 

degradation has been shown to impart greater 

microclimate change on in the forest floor (Barton et al. 

1989) (Proe et al. 2001) (Asbjomsen et al. 2004). These 

results imply that in tropical peatlands, forest 

degradation and land cover change - with corresponding 

alterations of soil microclimate (e.g., temperature, CO2, 

light, humidity) - will influence forest dynamics. 

Therefore, this research aims to investigate the impacts 

of peatland forests degradation (i.e., canopy gap levels) 

on their forest structure and their role on allocated forest 

biomass. 
 

 

MATERIALS AND METHODS 

 

This study was conducted in an ombrotrophic, 

peatland in Kubu Raya district, West Kalimantan, 

Indonesia (0013 S and1090 26 E, ~ 4 m a.s.l.;  ~3km 

from northern perimeter of Kuala Dua_Rasau Jaya 
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peatland). Forest structure, basal area and their biomass 

allocation condition had been assessed in 12 ha block of 

peatland forest.  From our peat surveys and studies in 

West Kalimantan, we determined that this study area 

was highly representative of West Kalimantan coastal-

peatland areas as the overwhelming majority of coastal 

peat areas had been selectively-logged. Our pre-survey 

classified this forest degradation by canopy gaps 

classes: low, intermediate, and high degraded (gaps < 

30%, 30-70%, and >70% consecutively. Under this 

class, we measured forest structure,  basal area, and 

their biomass stocks. We refined the canopy coverage 

measures with Leaf Area Indeks (LAI) readings. Based 

on our preliminary assessment on peatland forest tree 

canopy, there were 3 classes of canopy opening which 

lead us to class them into 3 classes of forest degradation 

as mentioned above. Across study area, trees diameter 

>10 cm were surveyed by assessing 48 of a 50 x 50 m 

plot and registered all trees diameter > 5 cm within each 

plot. Seedling measurements were subsampled 

systematically nested within each 50 m plots. All trees 

within the sampling plots were mapped, tagged, 

identified to species or at least to genus.   

Transforming tree diameter into accurate biomass 

estimates requires application of an appropriate 

allometric equation (Clark et al. 2001).  We follow 

(Paoli and Curran 2007) (Astiani et al. 2015) to estimate 

aboveground biomass using the moist forest equation of 

(Chave and Andalo 2005) that also incorporates specific 

wood densities.  In addition, LAI, microclimate and soil 

properties were also investigated. Throughout the 

estimation of stand structure, basal area, and biomass, 

data are presented as means and standard errors (SE) 

unless otherwise noted.  To test for differences among 

peat degradation levels/canopy gap classes, ANOVA 

analyses were used and then proper pairwise 

comparisons were applied (e.g., Tukey Procedures). 

This procedure was also used to test for differences 

among forest canopy classes with several environment 

factors (peat temperature (ºC), peat water vapour (H2O 

mmol mol-1), peat CO2 concentration (ppm), peat water 

content (%), ambient temperature (ºC), amount of 

throughfall (mm), and Leaf Area Index measurement 

reading (m2/m2). 

 

    

RESULTS AND DISCUSSION 

 

Peatland Forest Structure among Degradation 

Levels 

This peatland ecosystem is presented here best 

reflect degraded or converted peat forest parcels and 

provide a realistic condition of general peatland forest in 

Indonesia at present. The distribution of forest canopy 

gap explain that there was various condition of present 

peatland forest. The canopy closures distribution on 

each measurement ranging from 0.5% to 92% and 

within plot average range was 11% to 87% (Figure 1a 

and 1b).  
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Figure 1. a) Peatland forest overall canopy closures 

distribution (%) within study area; b) Canopy 

closures distribution within each canopy 

coverage class (%) 

 

Forest structure among degradation levels and tree-

diameter distribution demonstrated that larger tree 

(diameter >20 cm) show no difference on their density. 

However the smaller tree generate significant different 

among them. High degraded peatland forest 

significantly reduced tree density compare to low and 

mid degraded one tree diameter 10-20 cm and 5-10 cm 

(Figure 2). This results indicate that forest degradation 

impacted the natural succession of younger trees, while 

for larger trees, there were no significant effect. Our 

previous assessment on new seedlings also support the 

results (Figure 3; (Paoli and Curran 2007). Viewed from 

forest structure, this peatland forest is in good stage of 

succession after disturbance as logged over area that 

was low impact harvesting in 2003-2004 for 

transmigrants housing near the forest. The tree density 

distribution of large to small trees demonstrate that this 

forest is in good state of their succession. Since the 

larger trees (diameter > 20 cm) were logged on those 

event, they showed similar trend of density, while 

smaller trees adapted to new forest condition post 

harvesting. 

The stand density over study area, under low, 

intermediate, and high degraded peatland forest were 

consecutively 87.0 ± 6.1, 86.2 ± 8.5, and 66.7 ± 6.7 

trees/ha for diameter > 20 cm, 411.1 ± 17.2, 340.2 ± 

31.5, and 180.0 ± 47.4 trees/ha for diameter 10-20 cm, 

and 1 172.9 ± 52.7, 1 094.1 ± 76.2, and 666.7 ± 159.3 

trees/ha for trees diameter 5-10 cm.  There were 

decreases of ~23% on trees diameter > 20 cm, ~56%, on 

diameter 10-20 cm, and ~43% on 5-10 cm. The seedling 

and sapling population density under low, intermediate, 

and high degraded peatland forest are 26 436; 25 241; 

and 16 467 seedlings/ha consecutively.  However, the 

data imply that forest degradation influence the young 

trees density.  High level of forest degradation reduced 
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their seedling population to 55% when the forest are 

highly degraded from relatively low degraded condition 

(Figure 2 and 3).  
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Figure 2. a. Tree Density distribution showing recent 

peatland forest structure among degradation 

levels; b. Seedling distribution among 

peatland forest degradation levels (Brown 

1993). 

 

Peatland Forest Basal Area Distribution 

There was consistently a shift of stand basal area 

under various degradation levels. Mean basal area of 

study area was 17.0, 16.7, dan 11.2 m2 consecutively for 

closed, mid, and low degraded peatland forest. 

Distribution of each diameter class and their statistical 

mean separation analysis is presented in Figure 3.  Basal 

area shows the tree occupation within the unit area. This 

secondary peatland forest is mainly has lesser stem area 

compared to lowland forest.  
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Figure 3. Forest basal area among forest degradation 

levels and tree diameter classes 

 

Biomass Allocation among Forest Degradation 

Levels 

Peatland forest comprised of approximately 157.3, 

158.1, 132.2 ton/ha consecutively for low, mid, and 

high degradation. There were decreased ~3.5 to 13.6 

ton/ha biomass reduction on trees > 10 cm. On the 

contrary, smaller trees (< 10 cm) increased 4.6 ton/ha 

when forest being degraded relatively low degraded 

forest into high level or when canopy gap is increase 

into larger than 70%.  
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Figure 4. Biomass allocation per ha of a) tree diameter 

> 5 cm; b) seedling of peatland forest 

 

Peat Environmental Conditions  

We collected data on Leaf Area Index among peat 

temperature, peat surface water vapor, peat water 

content, soil surface CO2 concentration, ambient 

temperatures, and amount of precipitation under 3 

canopy levels (forest degradation). Repeated Measures 

ANOVA showed that several microclimate conditions 

under forest degradation levels were invariably 

significantly different.  

The distribution of LAI was quite wide within 

degraded forest yet when classed into degradation levels 

following canopy closures measurement, there were 

significantly difference among them. Low and mid 

degraded forest was 2.6 and 2.3 m2/m2 significantly 

higher than high degraded one. The mean LAI 

distribution were 4.53 ± 0.13, 5,22 ± 0.20, and 1.95 ± 

0.71 m2/m2 consecutively for low, mid, and high 

degraded forest (Figure 5a). Further analysis to check 

the correlation between forest canopy coverage and LAI 

found that there was positif correlation between them (r 

= 0.41, p = 0.004). The regression equation of the 2 

factors is Canopy Closure = 41.286 + (6.388 * LAI) 

with  n = 48;  r = 0.407, r2 = 0.17, and SE = 14.03 

(Figure 5b). The equation explains that within the range 

of this forest condition,  the increasing of 1 m2/m2 LAI 

will equal to the depleting ~6.4% canopy coverage. 
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Figure 5.a.  Mean Leaf Area Index among forest 

degradation level; b Linear Regression and 

correlation bertweenLAI and canopy 

coverage 

 

Results show that forest degradation reduced tree 

densities on forest floor. Fewer seed sources under high 

degraded forest because of lesser large trees could be 
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one of the reasons why regeneration here was not as 

dense as under low or intermediate degraded forest. 

Surprisingly, seedling and sapling biomass was 

relatively high if compared to the density in mineral 

tropical forest (Brown 1997) Our prior study 

demonstrated that this peatland forest total biomas was 

~128 ton/ha (Astiani 2014). Thus, peatland forest 

contribute to 86% of total biomass while young trees 

comprised the rest. 

Our results indicate that larger gaps reduce tree 

density except for sapling stage. It is indicated that 

under high degraded forest is demonstrating potential 

recovery of this degraded peatland forest (Berenguer et 

al. 2014) and in general, this peatland forest has 

relatively adequate young tree to fulfill peatland forest 

regeneration.  This phenomenon need more attention in 

order to reduce the loss of higher biomass in the future 

time. Some species might be favor to and some might 

be not tolerate to the alteration of site condition due to 

the canopy gaps changes. 
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