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 Abstract

This paper describes the use of remotely sensed data to measure vegetation variables such as basal area, biomass, 
and stand volume. The objective of this research was developed regression models to estimate basal area (BA), 
aboveground biomass (AGB), and stand volume (SV) using Landsat-based vegetation indices. The examined 
vegetation indices were SAVI, MSAVI, EVI, NBR, NBR2, and NDMI.   Regression models were developed based on 
least-squared method using several forms of equation, i.e., linear, exponential, power, logarithm, and polynomial.  
Among those models, it was recognized that the best fit of model was obtained from the exponential model, log (y) = 
ax + b for estimating BA, AGB, and SV.  The MSAVI had been identified as the most accurate independent variable to 
estimates basal area with R² of 0.70 and average verification values of 16.39% (4–32.66%); while the EVI become 

2the best independent variable for estimating aboveground biomass (AGB) with R  of 0.72 and average of verification 
values of 18,10% (9–28.01%); and the NDMI was recognized to be the best independent variable to estimate stand 

2volume with R  of 0.69 and average of verification values of 24.37% (-15–38.11%).   
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Introduction
Mining is an extraction activity to obtain natural 

resources from the earth layer. Some mining products are 
coal, metals, oil, etc. Despite mining has high economic 
value, in the other hand, it also one of the sectors that can lead 
to decreasing of environmental quality (Dontala et al., 2015; 
Aguirre-villegas & Benson 2017; Arshi, 2017). However, the 
environmental damage that occurs as a result of mining 
activity can be restored through reclamation. Reclamation 
assessment in Indonesia stated in Ministry of Forestry 
Regulation Number P.60 of 2009 about Guidelines for 
Assessment of Forest Reclamation Success where this 
regulation applied in forest area. There are three criteria for 
forest reclamation success in this regulation such as land 
arrangement, erosion and sedimentation control, and 
revegetation. Based on this regulation, revegetation criteria 
has the highest weight (50%) than the others criteria. This 
statement indicate that re-vegetation become the highest 
contributor that determine the value of reclamation success in 
Indonesia.

Monitoring of reclaimed area provides information 

related to post mining rehabilitation. Conventional methods 
such as field measurement and laboratory studies to monitor 
changes of vegetation cover and vegetation health mapping 
requires high labor force and time. The method may be 
suitable for local scale analysis, but are inefficient for 
regional scale (Karan et al., 2016; Lu et al., 2016). The 
availability of data and remote sensing technology is an 
opportunity to develop a method that is practical especially 
for natural resources monitoring. Field measurement 
become the primary data for regression development and 
model validation. 

Result of vegetation inventory is basis data for 
management decision whether the reclaimed area was 
proposed for conservation area or another integrated uses 
such as plantation, agroforestry or silvopasture for local 
community and also ecotourism by considering environment 
conditions (Kodir et al., 2017). Vegetation condition such as 
basal area, biomass and stand volume become vegetation 
variables that feasible to measure and also reflects the 
environment condition in reclamation. Basal area become an 
applicable vegetation variable that measured in field 
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measurement while biomass acts as ecological reflection and 
stand volume acts as economical reflection in reclamation 
area. Biomass represents the carbon stock, where 40–50% of 
biomass in tropical forest stored carbon (Pan et al., 2011; Min 
et al., 2013). There was several previous research that used 
remote sensing approach both from active or passive energy 
source, very high or moderate resolution for monitor or 
inventories vegetation variable depend on the availability of 
the data (Cartus et al., 2012; Mora et al., 2013; Sinha et al., 
2015; Tanaka et al., 2015; Lu et al., 2016; Peng et al., 2019; 
Dos Reis et al., 2019; Chen et al., 2020; Hawryło et al., 2020; 
Salazar & Garcia 2020; Zhu et al., 2020).

This research integrates field measurement data with 
remote sensing approach that aims to develop regression 
model for estimating basal area, aboveground biomass and 
stand volume as a tool for reclamation monitoring and 
inventory. Remote sensing data was correlated with field 
measurement data to obtain reflection in terrestrial condition 
(basal area, aboveground biomass and stand volume) based 
on remote sensing data. 

Methods
Time and location Field measurement conducted from 
January–April 2020 located at mining coal company namely 
PT Berau Coal, site Sambarata, Berau District, East 
Kalimantan Province, Indonesia while data processing 
conducted from May–October 2020 in IPB University, 
Bogor, West Java, Indonesia. 

Research focused only in the revegetation area where 
dominated with sengon (Paraserianthes sp.), johar (Cassia 
siamea), akasia (Acacia mangium), and almost 80% of 
revegetation area consist of those vegetation as a result of 
primary revegetation. Research location showed in Figure 1.

Data and tools Data that used in this research were 1). high 
resolution imagery (Worldview 1: Red Green Blue band 
composite in 2019) for selecting plot location; 2). Landsat 8 
vegetation indices derived from surface reflectance data for 
vegetation indices value with Landsat 8 scene ID: 
LC81170582019123LGN01, Path 117 Row 58 acquired 
May 3th 2019; 3). Field measurement data that consist of 1–9 
years old vegetation (planted year from 2011–2019). 
Vegetation type and diameter were recorded in tally sheet for 
terrestrial sample at selected plot that appropriate with 
Landsat 8-pixel imagery (30×30 m).

Tools that used in this research were 1) GPS Garmin64s 
for navigates to the selected plot; 2) laptop that installed 
ArcMap 10.5 for designing field measurement plot and 
spatial data processing, Microsoft Excel for field 
measurement data recapitulation, R studio for statistical 
analysis; 3) vegetation analysis tools for field measurement 
such as tape (centimetres unit) for diameter measurement and 
tally sheet for recording field measurement data; 4) compass 
and tape (meters unit) for building plot on selected location.

Research procedure Designing field measurement plot Plot 
designing started by creating grid plot that adjusted with 
Landsat 8 spatial resolution in the entire revegetated area 
using ArcMap 10.5 application. Plot for field measurement 
was 30×30 m where that size adjusted with Landsat 8 spatial 
resolution (Knight & Kvaran, 2014). Plot location selected 
using purposive sampling method by considering plantation 
age (planted year) and revegetation performance in every 
plantation age observed from high resolution imagery 
(Worldview 1).

Total plot for this research were 50 plot that distributed in 
every plantation age. Those 50 plots divided into 35 plots that 

Figure 1 Research location.
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used to build the model and the 15 remaining plots were used 
to verify the model (validation). Vegetation age consideration 
hopefully reflect the variance between the youngest until the 
oldest vegetation condition whether in terrestrial fact or in 
remote sensing value. Based on this assumption, it's 
important to locate sample plot in every plantation age and 
selected plot in every plantation age must be homogen within 
30 × 30 m plot size, therefore the spectral reflectance or 
vegetation indices represented homogenous object. 
Illustration for selected plot in 1, 6, and 9 years old vegetation 
showed in Figure 2.

Landsat 8 vegetation indices A common remote sensing 
method for monitoring vegetation involves the use of data 
transformations. The transformations known as vegetation 
indices (VI) are defined as dimensionless, radiometric 
measures of vegetation, and have been used as indicators of 
the relative abundance, density, and vigor of green 
vegetation. The most typical wavelengths used in vegetation 
studies are Red (R) and Near Infra-Red (NIR) bands, 
although other bands have also been used. The reason for 
focusing on red and near-infrared is that these two 
wavelength regions tend to have particularly strong 
associations with vegetation (Kazar & Warner 2013).

There are several vegetation indices that found, but only 
vegetation indices provided by USGS were used in this 
research such as Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted 
Vegetation Index (SAVI), Modified Soil Adjusted Vegetation 
Index (MSAVI), Normalized Difference Moisture Index 
(NDMI), Normalized Burn Ratio (NBR), and Normalized 
Burn Ratio 2 (NBR2). Those vegetation indices obtained by 
ordering through https://espa.cr.usgs.gov/. Formula of 
vegetation indices that used exactly same with formula that 
used by Gizachew et al (2016) as shown in Equation [1] to 
Equation [7].

        [1]

        [2]

        [3]

        [4]

         [5]

        [6]

        [7]

Illustration for natural color and vegetation indices at 
research location showed in Figure 3.

Field measurement and derivation Field measurement 
started by building plot for vegetation analysis sized 30 ×
30 m that already designed and selected in previous step. 
Field measurement activity consist of recording vegetation 
type and diameter. Furthermore, diameter data from field 
measurement was converted into basal area, aboveground 
biomass and stand volume. Basal area obtained based on the 
Equation [8].

Basal Area = 0.25× π × d          [8]  2

Meanwhile aboveground biomass and stand volume 
obtained using allometric equation. The allometric equation 
that used in this research selected by considering similarity 
or closeness location. Allometric equation that used in this 
research mentioned in Table 1.

Model development and selection Correlation between field 
measurement and vegetation indices value in Landsat 8 
become basis for regression model development. 
Furthermore, selected vegetation indices were tested using 
Kolmogorov Smirnoff test for normality distribution. 
Vegetation indices that has normal distribution indicated by 
p-value > α(0.05) at confidence level 95%. Regression 
model that developed in this research showed in Table 2.

R-squared considered to the further step for classical 
assumption test (residual normality and heteroscedasticity 

Figure 2 Selected plot position and size appropriated with Landsat 8 pixel and homogeny field condition.
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Figure 3 Display of natural colour and vegetation indices at research location (1:100,000).

Table 1 Allometric equation to obtain aboveground biomass and stand volume from diameter

Table 2	 Regression model development form

4
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test). Autocorrelation and multicollinearity test not 
conducted caused by the independent variable was not time 
series (continue) and the regression that developed only 
applied single independent variable for estimating basal area, 
aboveground biomass and stand volume. Regression model 
that developed must be fulfilled the residual requirement 
such as normal distribution, homoscedastic and independent. 
The residual has normal distribution if the Kolmogorov 
Smirnoff test has p-value > 0.05 and has homoscedastic if the 
Glejser test has p-value > 0.05.

Model selection done by considering statistical accuracy 
such as aggregate deviation (AD), mean deviation (MD), 
Root Mean square (RMSE), Bias (E), and also R-squared. All 
of those statistical accuracy considered has equal weight to 
determine the selected model. Validation equation as shown 
in Equation [9] to Equation [12].

            [9]
         

        [10]

        [11]

       [12]

Model development flow for estimating basal area, 
aboveground biomass and stand volume showed in Figure 4.

Results and Discussion
Field measurement & remote sensing approach 
Individual and diameter distribution that indicates the 
horizontal distribution of the vegetation in each age showed 
in .Table 3 and Table 4

Based on Table 3 and Table 4, vegetation type divided 
into 4 class where there were three class vegetation that 
became main vegetation for revegetation (Paraserianthes 
sp., C. siamea, A. mangium) and the remaining class was the 
other vegetation except 3 main vegetation that mentioned 
previous. Paraserianthes sp. became the most abundant 
vegetation followed by C. siamea, this phenomenon 
indicates that in revegetation area dominated consistently 
with planted vegetation. Reclamation method such as 
revegetation or natural regeneration (succession) determines 
the ecosystem that formed where in this case revegetation 
method was selected and implied to the dominant vegetation 
in the reclamation area (Šebelíková et al., 2016).

Actually, in planted year 2011 has high vegetation 
density whether in individual density or use of space 
(diameter). This statement supported by a plot that has 
representative location in planted year 2011 with density of 

-1individual vegetation 300 individual ha  and basal area 

Figure 4 Model development flowchart for estimating basal area, aboveground biomass and stand volume.
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Table 3 Distribution of individual vegetation in each planted year (plantation age)

Planted 
year 

Plantation 
age  

Total 
plot  

Individu  ha-1  
Paraserianthes 

sp.  

Cassia 
siamea  

Acacia 
mangium  

Others  Total  

2019 1  3  270.37  3.70  22.22  114.81  411.11  
2018

 
2

 
3

 
437.04

 
7.41

 
22.22

 
0.00

 
466.67

 
2017

 
3

 
6

 
377.78

 
159.26

 
5.56

 
16.67

 
559.26

 
2016

 
4

 
5

 
217.78

 
351.11

 
8.89

 
2.22

 
580.00

 
2015

 
5

 
7

 
204.76

 
95.24

 
49.21

 
80.95

 
430.16

 2014
 

6
 

3
 

207.41
 

218.52
 

0.00
 

155.56
 

581.48
 2013

 
7

 
3

 
114.81

 
411.11

 
0.00

 
40

 
566.67

 2012

 
8

 
1

 
388.89

 
0.00

 
11.11

 
155.56

 
555.56

 2011

 

9

 

4

 

130.56

 

2.78

 

0.00

 

44.44

 

177.78

 Total

 

35

 

2,349.39

 

1,249.13

 

119.21

 

610.95

 

4,238.68

 

 
Table 4	 Distribution of vegetation diameter in each planted year (plantation age)

Planted 
year  

Plantation 
age  

Total 
plot  

Average diameter (cm)  
Paraserianthes 

sp.  

Cassia 
siamea  

Acacia 
mangium  

Others  
Overall  
average  

2019
 

1
 

3
 

9.19
 

6.05
 

6.48
 

4.50
 

6.56
 

2018
 

2
 

3
 

8.84
 

2.88
 

3.32
 

0.00
 

3.76
 2017

 
3

 
6

 
10.68

 
8.87

 
8.56

 
6.97

 
8.77

 2016

 
4

 
5

 
16.87

 
9.19

 
15.72

 
6.05

 
11.96

 2015

 

5

 

7

 

20.95

 

10.90

 

13.47

 

10.68

 

14.00

 2014

 

6

 

3

 

24.99

 

15.41

 

0.00

 

10.00

 

12.60

 2013

 

7

 

3

 

27.92

 

17.12

 

0.00

 

19.83

 

16.21

 
2012

 

8

 

1

 

20.04

 

0.00

 

17.83

 

7.81

 

11.42

 
2011

 

9

 

4

 

27.20

 

23.57

 

0.00

 

11.79

 

15.64

 
Total

 

35

      

 

Figure 5 Basal area (a), aboveground biomass (b), and stand volume (c) at sampled plot in every plantation age.

2 -1195,982.83 cm  ha  (Figure 5a) while the three remaining plot 
located at the side of the road and implied to the availability of 
the tree on those three plot. Based on this value, this one 

-representative plot in planted year 2011 has 300 individual ha
1 with diameter 28.84 cm for each individual tree. 
Furthermore, this case affects to the data distribution of basal 
area, aboveground biomass and stand volume in the sampled 
plot graph especially in planted year 2011 that showed in 
Figure 5 and also the vegetation indices in these three plot that 
showed in Figure 6.

Generally, basal area, aboveground biomass, and stand 
volume at sampled plot increases in every increment in the 
age although based on individual density there was 
fluctuated. Those phenomenon indicates that there was 
increasing in vegetation growth especially in use of space. 
Reclamation increase the performance of environmental 
improvisation at post mining area (Skaloš et al., 2015). 
Growth dynamic of basal area, aboveground biomass and 
stand volume in each plantation age at sampled plot showed 
in Figure 5.
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Based on remote sensing approach, the value of 
vegetation indices also reflects the same pattern as vegetation 
variables where the youngest vegetation has low value and 
increasing in every increment of age then decreasing occurs 
in several plots at 8–9 years old. There are variety in 
reflecting the plantation age, this variety explained by 
dividing value into 4 classes ranged from 0–0.25 (q1); 
0.25–0.50 (q2); 0.25–0.75 (q3); and 0.75–1 (q4). NDVI was 
the only vegetation indices that distributed value ranged from 
q3 and q4 also NDMI distributed value from q1 and q2 where 
the others ranged from q2 and q3. Especially for NBR2, the 
value only ranged in class q2. This phenomenon indicates the 
capabilities of vegetation indices to reflect the vegetation 
growth based on remote sensing approach. Vegetation 
indices unit in this research are multiplied by 10000 as given 
by the USGS where the general unit that used in vegetation 
indices usually from -0.1 up to 0.1. Vegetation indices 
dynamics in each plantation age showed in Figure 6.

Correlation and variable normality test Correlation was 
the first step followed by variable normality test for 
regression model development. Correlation indicates 
relationship between a variable with another variable and 
normality test indicates distribution of values in a variable. 
Correlation procedure became an initiator statistical 

measurement that considered to estimate a dependent 
variable based on remote sensing approach in several 
research (Ahmed et al, 2011; Eckert, 2012; Wahyuni et al., 
2016). Correlation value ranged from -1 to 1, negative value 
indicates the relation that formed was inverse and positive 
indicates the relation that formed was parallel. Relationship 
between a variable with another variable can be said strong if 
the correlation value closer to 1 or -1 and weak if the 
correlation value closer to 0 (Schober et al., 2018). 
Correlation between Landsat 8 surface reflectance and 
vegetation indices with basal area, aboveground biomass and 
stand volume listed in Table 5 while Kolmogorov Smirnoff 
test for vegetation indices normality distribution showed in 
Table 6.

Based on Table 5, correlation between Landsat 8 surface 
reflectance and vegetation indices with basal area, 
aboveground biomass and stand volume ranged from -0.67 to 
0.82. All vegetation indices have higher correlation value 
than 0.7 except correlation between NDVI with stand 
volume. In surface reflectance side, only Band5 that has 
correlation value higher than 0.65 while Band4 (Red Band), 
and Band7 (Short Wave Infra-Red 2 Band) has correlation 
value higher than 0.65 in relation with basal area and 
aboveground biomass only. Based on that, Band5 (Near 
Infra-Red Band), Band4 (Red Band), and Band7 (Short Wave 

Figure  6  Vegetation indices dynamics in each plantation age.
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Infra-Red 2 Band) became single band that related to the 
vegetation condition. Near Infra-Red Band (NIR Band) 
sensitive to vegetation while Band4 (Red Band) sensitive to 
soil properties (Ding et al., 2014). Due to sensitivity to 
vegetation and soil properties, Band5 and Band4 were the 
most used component in equation to obtain vegetation 
indices value. Band5 (NIR Band) used to calculate NDVI, 
SAVI, MSAVI, NBR, NDMI, EVI, and Band4 used to 
calculate NDVI, SAVI, MSAVI, and EVI.

Table 6 listed distribution of the data that used to 
estimates vegetation variables based on remote sensing 
approach (vegetation indices). As statistics requirement, 
variable that used to estimate another variable has to 
normally distributed so the pattern of the regression line run 
properly. Kolmogorov Smirnoff test was used to test the 
normality of the variable, data that has normal distribution 
has p-value higher than 0.05 with confidence level 95%. Data 
that has normal distribution identified by the intensity chart 
formed bell shaped which means the most frequent value that 
appear located in the middle of x axes or mean equal or 
significantly close with median and mode (Ainiyah et al., 
2016). Based on Table 6, all of the variables has normal 
distribution except NDVI variable that means NDVI unable 
to use as independent variable to estimate vegetation 
variables.

Model development Model development means develop 
regression equation to estimate dependent variable in this 
case three vegetation variables such as basal area, 
aboveground biomass and stand volume based on 
independent variables in this case through remote sensing 
approach. Time, effort and cost become more measurable by 
using this regression method. Sample plot that representative 
used to develop regression equation adjusted with available 
resources without ignoring statistics rule. Furthermore, 
extrapolation can be applied to the entire research area using 
regression equation that developed. R-squared of regression 
equation model to estimates basal area, aboveground 
biomass and stand volume based on vegetation indices listed 
inTable 7.

R-squared of regression equation model to estimates 
basal area ranged from 0.49 to 0.72; aboveground biomass 
ranged from 0.50 to 0.73 and stand volume ranged from 0.41 
to 0.69. R-squared was a statistical parameter that used to 

measure proportion of the variance for a dependent variable 
that explained by an independent variable (Lavista et al., 
2016). Based on description mentioned before, R-squared 
become important statistical parameter that considered in 
model selection. Furthermore, classical assumption was 
tested such as residual normality using Kolmogorov Smirnoff 
test and residual homogeneity using Glejser test on the model 
that has equal or higher R-squared value than the average. R-
squared average for basal area, aboveground biomass and 
stand volume regression equation model were 0.65; 0.65; and 
0.60 respectively. These values become threshold for 
continuing to classical assumption test. Residual normality 
test and homogeneity test result on the sort listed model 
showed in Table 8, Table 9, and Table 10.

Based on Table 8, Table 9, and Table 10, there were several 
model that has normal distribution and homogeneity on the 
residuals such as Form 1 SAVI, Form 1 MSAVI, Form 1 EVI, 
Form 2 MSAVI, Form 2 NBR and Form 2 NDMI to estimates 
basal area; Form 1 NDMI, Form 1 EVI, Form 2 SAVI, Form 2 
MSAVI, Form 2 NBR, Form 2 NDMI and Form 2 EVI to 
estimates aboveground biomass; Form 2 SAVI, Form 2 
MSAVI, Form 2 NDMI, Form 2 EVI, Form 3 MSAVI and 
Form 3 NBR to estimates stand volume. Residuals that has 
normal distribution indicates by p-value higher than 0.05 
resulted from Kolmogorov Smirnoff test and has 
homogeneity indicates by p-value higher than 0.05 resulted 
from Glejser test. Model that has normal distribution and 
homogeneity on the residual furthermore selected as proper 
model and continued to model selection step by calculating 
model accuracy or fitness using validation sample data.

Actually, classical assumption test consists of residual 
normality test, residual homogeneity test, autocorrelation test 
and multicollinearity test. However, in this research, 
autocorrelation test not conducted caused by the independent 
variable (x) was not time series (continue) observation and 
multicollinearity test not conducted caused by the model that 
developed only use single independent variable to estimate 
each vegetation variable.

Model selection Selecting the best model to estimates basal 
area, aboveground biomass and stand volume using remote 
sensing were performed using the model verification 
measures.  The verification of each regression model was 
tested by calculating their deviations from the estimate.  The 

Table 5 Correlation between Landsat 8 surface reflectance and vegetation indices with basal area, aboveground biomass and 
stand volume

 Surface reflectance  
Vegetation variables  Band1  Band2  Band3  Band4  Band5  Band6  Band7  
Basal area  -0.43  -0.53  -0.58  -0.62  0.69  -0.55  -0.65  
Aboveground biomass

 
-0.45

 
-0.55

 
-0.61

 
-0.64

 
0.65

 
-0.57

 
-0.67

 
Stand

 
volume

 
-0.39

 
-0.48

 
-0.52

 
-0.56

 
0.67

 
-0.50

 
-0.60

 
 

Vegetation indices
 Vegetation variables

 
NDVI

 
SAVI

 
MSAVI

 
NBR

 
NBR2

 
NDMI

 
EVI

 Basal area

 

0.72

 

0.81

 

0.82

 

0.79

 

0.76

 

0.80

 

0.82

 Aboveground biomass

 

0.73

 

0.80

 

0.81

 

0.80

 

0.77

 

0.81

 

0.81

 Stand

 

volume

 

0.65

 

0.75

 

0.78

 

0.74

 

0.72

 

0.75

 

0.77
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Table 7  R-squared of regression equation model to estimates basal area, aboveground biomass and stand volume based on 
vegetation indices

Dependent

 

variable

 
Independent

 

variable

 
R²

 

Form 1

 

Form 2

 

Form 3

 

Form 4

 

Form 5

 

Basal area

 

SAVI

 

0.65

 

0.69

 

0.66

 

0.60

 

0.72

 

MSAVI

 

0.68

 

0.70

 

0.68

 

0.63

 

0.71

 

NBR

 

0.62

 

0.69

 

0.67

 

0.57

 

0.69
 

NBR2

 

0.58

 

0.58

 

0.57

 

0.55

 

0.63
 

NDMI

 
0.65

 
0.71

 
0.61

 
0.49

 
0.68

 

EVI
 

0.67
 
0.71

 
0.69

 
0.61

 
0.72  

Aboveground 
biomass  

SAVI
 

0.64
 
0.70

 
0.68

 
0.60

 
0.68  

MSAVI  0.66  0.71  0.70  0.62  0.67  
NBR  0.64  0.72  0.70  0.59  0.68

 
NBR2  0.59  0.63  0.63  0.56  0.62

 NDMI  0.65  0.73  0.62  0.50  0.68

 EVI
 

0.66
 
0.72

 
0.70

 
0.61

 
0.68

 

Stand

 

volume

 

SAVI
 

0.57
 
0.64

 
0.62

 
0.51

 
0.68

 MSAVI

 
0.60

 
0.65

 
0.63

 
0.54

 
0.68

 
NBR

 

0.54

 

0.65

 

0.62

 

0.49

 

0.64

 
NBR2

 

0.52

 

0.51

 

0.49

 

0.49

 

0.62

 

NDMI

 

0.56

 

0.69

 

0.60

 

0.41

 

0.63

 

EVI

 

0.59

 

0.67

 

0.64

 

0.53

 

0.69
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Table  6 	Kolmogorov Smirnoff test for vegetation indices 
normality distribution

Variable p-value Distribution

NDVI 0.04 p-value < 0.05 Un-Normal

SAVI

 

0.06

 

p-value > 0.05 Normal

MSAVI

 

0.10

 

p-value > 0.05 Normal

NBR

 

0.69

 

p-value > 0.05 Normal

NBR2
 
0.87

 
p-value > 0.05 Normal

NDMI  0.51  p-value > 0.05 Normal

EVI 0.06 p-value > 0.05 Normal

Table  8 Residual normality test and homogeneity test for basal area model

Residual normality

 

Heteroscedastic

 
Model

 

Independent 
variable

 

p-value

 

Normality

 

Model

 

Independent 
variable

 

p-value

 

Heteroscedastic

Form 1

 

SAVI

 

0.34

 

Normal

 

Form 1

 

SAVI

 

0.31

 

Homoscedastic

MSAVI

 

0.30

 

Normal

 

MSAVI

 

0.20

 

Homoscedastic

EVI

 

0.26

 

Normal

 

EVI

 

0.20

 

Homoscedastic

Form 2

 

SAVI

 

0.10

 

Normal

 

Form 2

 

SAVI

 

0.03

 

Heteroscedastic

MSAVI

 

0.33

 

Normal

 

MSAVI

 

0.08

 

Homoscedastic

NBR

 

0.11

 

Normal

 

NBR

 

0.07

 

Homoscedastic

NDMI

 

0.10

 

Normal

 

NDMI

 

0.08

 

Homoscedastic

EVI

 

0.11

 

Normal

 

EVI

 

0.04

 

Heteroscedastic

Form 3

 

SAVI

 

0.26

 

Normal

 

Form 3

 

SAVI

 

0.01

 

Heteroscedastic

MSAVI

 

0.19

 

Normal

 

MSAVI

 

0.01

 

Heteroscedastic

NBR

 

0.01

 

Un-Normal

 

NBR

 

0.05

 

Heteroscedastic

EVI

 

0.20

 

Normal

 

EVI

 

0.01

 

Heteroscedastic

Form 5

 

SAVI

 

0.79

 

Normal

 

Form 5

 

SAVI

 

0.01

 

Heteroscedastic

MSAVI 0.46 Normal MSAVI 0.01 Heteroscedastic

NBR 0.71 Normal NBR 0.02 Heteroscedastic

NDMI 0.33 Normal NDMI 0.02 Heteroscedastic

EVI 0.46 Normal EVI 0.01 Heteroscedastic

closer to the estimate with the smaller deviation is expressing 
the better fitness.  Model verification measures applied were 
aggregative deviation (AD), mean deviation (MD), root 
mean square error (RMSE), and bias (E).  All of those 
verification values were then transformed into standardized 
scores. The highest score is expressing the lowest deviation. 
Generally, model fitness means comparing the value based 
on equation model with the actual condition in field. Scoring 
table for selecting the best model regression to estimates 
basal area, aboveground biomass and stand volume 
respectively showed in Table 11, Table 12, and Table 13.
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Based on Table 11, the highest score for estimates basal 
area was model M4 (Form 2 MSAVI) with final score 4.8. The 
equation of selected model was log(y) = 7.1894(x) + 5.0409 
where x was MSAVI ranged from -0.5620 to 0.7510 and y was 
basal area. Aggregate deviation, mean deviation, RMSE, 

2 Bias and R in this model 0.04, 27.02%, 32.66%, 1.88%, and 
0.70 respectively. The aggregate deviation 0.04 met the 
criteria range from -1 to 1 while the mean deviation 27.02% 
where this value higher than 10% that suggested. RMSE was 
32.66% and bias was 1.88% where the lower the RMSE and 
bias value is, the more accurate model will be. Based on 
deviation calculation, the averaged deviation for estimating 

basal area was 16.39%. This value higher than averaged 
deviation from Negara et al. (2021) was 11.3% that used 
drone imagery which has 5 cm spatial resolution for 
estimating basal area in post mining oil exploration area. 
MSAVI was found to be most sensitive to canopy fraction 
cover (Tsai et al., 2016). MSAVI increase the dynamic range 
of the vegetation signal while further minimizing the soil 
background influences, resulting in greater vegetation 
sensitivity as defined by a “vegetation signal” to “soil noise” 
ratio, the MSAVI can be said to be a more sensitive indicator 
for amount of vegetation (Qi et al., 1994).
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Residual normality  Heteroscedastic  
Model  Independent 

variable
 

p-value  Normality  Model  Independent 
variable

 

p-value  Heteroscedastic  

Form 1
 
MSAVI

 
0.04

 
Un-Normal

 
Form 1

 
MSAVI

 
0.12

 
Homoscedastic

 NDMI

 
0.94

 
Normal

 
NDMI

 
0.08

 
Homoscedastic

 EVI

 

0.22

 

Normal

 

EVI

 

0.16

 

Homoscedastic

 Form 2

 

SAVI

 

0.21

 

Normal

 

Form 2

 

SAVI

 

0.06

 

Homoscedastic

 
MSAVI

 

0.17

 

Normal

 

MSAVI

 

0.18

 

Homoscedastic

 
NBR

 

0.08

 

Normal

 

NBR

 

0.09

 

Homoscedastic

 
NDMI

 

0.32

 

Normal

 

NDMI

 

0.19

 

Homoscedastic

 

EVI

 

0.08

 

Normal

 

EVI

 

0.13

 

Homoscedastic

 

Form 3

 

SAVI

 

0.25

 

Normal

 

Form 3

 

SAVI

 

0.01

 

Heteroscedastic

 

MSAVI

 

0.19

 

Normal

 

MSAVI

 

0.03

 

Heteroscedastic

 

NBR

 

0.03

 

Un-Normal

 

NBR

 

0.02

 

Heteroscedastic

 

EVI

 

0.32

 

Normal

 

EVI

 

0.02

 

Heteroscedastic

 

Form 5

 

SAVI

 

0.08

 

Normal

 

Form 4

 

SAVI

 

0.01

 

Heteroscedastic

 

MSAVI

 

0.05

 

Un-Normal

 

MSAVI

 

0.03

 

Heteroscedastic

 

NBR

 

0.81

 

Normal

 

NBR

 

0.01

 

Heteroscedastic

 

NDMI

 

0.64

 

Normal

 

NDMI

 

0.01

 

Heteroscedastic

 

EVI

 

0.15

 

Normal

 

EVI

 

0.01

 

Heteroscedastic
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Table  10 	Residual normality test and homogeneity test for stand volume model

Residual normality  Heteroscedastic  
Model  Independent 

variable  

p-value  Normality  Model  Independent 
variable  

p-value  Heteroscedastic  

Form 1  MSAVI  0.44  Normal  Form 1  MSAVI  0.00  Heteroscedastic  
Form 2  SAVI  0.34  Normal  Form 2  SAVI  0.09  Homoscedastic  

MSAVI  0.17  Normal  MSAVI  0.12  Homoscedastic  
NBR  0.02  Un-Normal  NBR  0.12  Homoscedastic  
NDMI

 
0.08

 
Normal

 
NDMI

 
0.16

 
Homoscedastic

 
EVI

 
0.26

 
Normal

 
EVI

 
0.08

 
Homoscedastic

 
Form 3

 
SAVI

 
0.20

 
Normal

 
Form 3

 
SAVI

 
0.05

 
Heteroscedastic

 
MSAVI

 
0.27

 
Normal

 
MSAVI

 
0.07

 
Homoscedastic

 NBR
 

0.07
 

Normal
 

NBR
 

0.07
 
Homoscedastic

 EVI
 

0.43
 

Normal
 

EVI
 

0.03
 
Heteroscedastic

 Form 5
 

SAVI
 

0.62
 

Normal
 

Form 5
 
SAVI

 
0.00

 
Heteroscedastic

 MSAVI
 

0.69
 

Normal
 

MSAVI
 

0.00
 
Heteroscedastic

 NBR
 

0.57
 

Normal
 

NBR
 

0.00
 
Heteroscedastic

 NBR2

 
0.53

 
Normal

 
NBR2

 
0.00

 
Heteroscedastic

 NDMI

 

0.71

 

Normal

 

NDMI

 

0.00

 

Heteroscedastic

 EVI

 

0.81

 

Normal

 

EVI

 

0.00

 

Heteroscedastic
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Based on , the highest score for estimates Table 12
aboveground biomass was model M7 (Form 2 EVI) with 
final score 6.6. The equation of this selected model log (y) = 
6.4503(x) + 4.6215 where x was EVI ranged from -0.5614 to 
0.7511 and y was vegetation variable that estimated in this 
case aboveground biomass. Aggregate deviation, mean 

2deviation, RMSE, Bias and R  in this model 0.09, 24.32%, 
28.01%, 11.05%, and 0.72 respectively. The aggregate 
deviation for estimating aboveground biomass also met the 
criteria range from -1 to 1 while the mean deviation higher 
than 10% that suggested. Averaged deviation for estimating 
aboveground biomass was 18.09%. That value higher than 
averaged of deviation from Negara et al. (2021) was 15.2%. 
The EVI developed to optimize the vegetation signal with 
improved sensitivity in high biomass regions and improved 
vegetation monitoring through a de-coupling of the canopy 
background signal and a reduction in atmosphere influences 

(Huete et al., 2002). In several research, EVI was considered 
vegetation indices that can improved sensitivity to high 
biomass regions and improved vegetation monitoring 
capability (Kazar & Warner 2013; Yuan et al., 2016; Bao et 
al., 2019).

Based on Table 13, the highest score for estimates stand 
volume was model M3 (Form 2 NDMI) with final score 6. 
The equation of this selected model log(y)= 10.025(x) - 
1.9251 where x was NDMI ranged from 0.2917 to 0.4845 
and y was vegetation variable that estimated in this case 
stand volume. Aggregate deviation, mean deviation, 

2RMSE, Bias and R  in this model respectively -0.15, 
32.01%, 38.11%, 13.37%, and 0.69. The aggregate 
deviation and mean deviation for estimating stand volume 
also reflect the same with basal area and aboveground 
biomass model estimation where the aggregate deviation 
value from -1 to 1 and mean deviation higher than 10%. 
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Table  11 Scoring table for selecting the best model to estimates basal area

Table 12 Scoring table for selecting the best model to estimates aboveground biomass

  M1  s  M2  s  M3  s  M4  s  M5  s  M6  s  M7  s  

AD  0.24  2  0.17  5  0.10  6  0.19  4  0.214  3  0.258  1  0.09  7  

MD  40.40  3  29.38  4  25.10  6  26.20  5  41.32  2  46.67  1  24.32  7  
RMSE

 
42.26

 
3

 
31.73

 
4

 
28.53

 
6

 
30.09

 
5

 
47.44

 
2

 
52.28

 
1

 
28.01

 
7

 
E

 
31.70

 
2

 
20.57

 
4

 
11.28

 
6

 
15.94

 
5

 
27.25

 
3

 
34.81

 
1

 
11.05

 
7

 
R²

 
0.65

 
1

 
0.66

 
2

 
0.70

 
3

 
0.71

 
4

 
0.72

 
6

 
0.73

 
7

 
0.72

 
5

 
FS

  
2.2

  
3.8

  
5.4

  
4.4

  
3.2

  
2.2

  
6.6

 Note: AD = aggregate deviation, MD = mean deviation (%), RMSE = root mean square error

 
(%), E = bias

 
(%), FS = final 

score, M1 = Form1 NDMI, M2 = Form1 EVI, M3 = Form2 SAVI, M4 = Form2 MSAVI, M5 = Form2 NBR, M6 = Form2 
NDMI, M7 = Form 2 EVI, s

 

= score

 

 Table  13  Scoring table for selecting the best model to estimates stand volume

  M1  s  M2  s  M3  s  M4  s  M5  s  M6  s
 

AD  -0.57  4  -0.54  4  -0.15  6  -0.56  3  -0.59  1  -0.43  5
 

MD
 

41.88
 

2
 

41.50
 

4
 

32.01
 
6

 
41.78

 
3

 
42.53

 
1

 
34.78

 
5

 
RMSE

 
48.39

 
3

 
48.36

 
4

 
38.11

 
6

 
48.59

 
2

 
48.87

 
1

 
44.73

 
5

 E
 

36.34
 

2
 

35.21
 

4
 

13.37
 
6

 
35.99

 
3

 
37.09

 
1

 
30.20

 
5

 R²
 

0.64
 

3
 

0.65
 

4
 

0.69
 
6

 
0.67

 
5

 
0.63

 
2

 
0.62

 
1

 FS

  
2.8

  
4

  
6

  
3.2

  
1.2

  
4.2

 Note: AD = aggregate deviation, MD = mean deviation (%), RMSE = root mean square error (%), E = bias

 

(%), FS = 
final score, M1 = Form2 SAVI, M2 = Form2 MSAVI, M3 = Form2 NDMI, M4 = Form2 EVI, M5 = Form3 MSAVI, M6 
= Form3 NBR, s = score

 M1  S  M2  s  M3  s  M4  s  M5  s  M6  s  
AD  0.11  5  0.12  3  0.11  5  0.04  6  0.14  2  0.20  1  
MD

 
26.39

 
5

 
27.19

 
3

 
26.26

 
6

 
27.02

 
4

 
39.51

 
2

 
43.40

 
1

 
RMSE

 
32.00

 
5

 
32.64

 
4

 
31.80

 
6

 
32.66

 
3

 
45.36

 
2

 
48.82

 
1

 E

 

12.54

 

5

 

13.68

 

3

 

12.61

 

4

 

1.88

 

6

 

16.09

 

2

 

24.99

 

1

 R²

 

0.65

 

1

 

0.68

 

3

 

0.67

 

2

 

0.70

 

5

 

0.69

 

4

 

0.71

 

6

 FS

  

4.2

  

3.2

  

4.6

  

4.8

  

2.4

  

2

 
Note: AD = aggregate deviation, MD = mean deviation (%), RMSE = root mean square error (%), E = bias

 

(%), FS = final 
score, M1 = Form1 SAVI, M2 = Form1 MSAVI, M3 = Form1 EVI, M4 = Form2 MSAVI, M5 = Form2 NBR, M6 = Form2 
NDMI, s

 

= score
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Based on deviation calculation, the averaged deviation for 
estimating stand volume was 24.37%. Compared with 
Apriyanto et al. (2019) that estimate stand volume at Bintuni 
Bay District, West Papua using SPOT 6 imagery with 1.5 m 
spatial resolution, averaged of aggregate deviation and mean 
deviation was 8.67% while averaged of aggregated deviation 
and mean deviation in this research was 35.06%.

All selected model for estimate basal area, aboveground 
biomass and stand volume has averaged deviation between 
16.39–24.37% especially for mean deviation and RMSE that 
has higher than 20%. Based on that explanation, estimating 
basal area, aboveground biomass and stand volume using 
medium resolution imagery (Landsat 8) has averaged 
deviation higher than 10%. If compared with previous studies 
that used more detail data such as drone imagery with 5 cm 
spatial resolution and SPOT 6 imagery with 1.5 m spatial 
resolution, this research has lower accuracy. Despite this 
research has lower accuracy, the data that used in this research 
was applied free-access data using Landsat-8 data. Model 
graph for estimating basal area, aboveground biomass and 
stand volume illustrates by plotting the vegetation indices on 
x axes and vegetation variable on y axes. Figure 7 showed 
model scatter plot of a). model for estimating basal area 
consist of MSAVI as x axes and basal area as y axes, b). model 
for estimating aboveground biomass consist of EVI as x axes 
and aboveground biomass as y axes, also c). model for 
estimating stand volume consist of NDMI as x axes and stand 
volume as y axes.  Points depict the data that used to build the 
model while triangle depict the data that used to calculate the 
fitness (validation) of the model.

Conclusion
All of the developed models to estimate basal area, 

aboveground biomass, and stem volume used form 2 equation 
(exponential) with the expression which requires 
transformation of the dependent variable before developing 
the regression model equation. MSAVI, EVI, and NDMI 
were used as independent variables to estimate basal area, 
aboveground biomass, and stand volume, with equation 

2 log(y) = 7.1894(x) + 5.0409   where x was MSAVI with R
2 0.70, log (y) = 6.4503(x) + 4.6215 where x was EVI with R

0.72, and log (y) = 10.025(x) - 1.9251 where x  was NDMI 
2 with R 0.69. The averaged deviation for estimating basal 

area, aboveground biomass, and stand volume was 16.39%, 
18.09%, and 24.37%, respectively. Despite the fact that the 
average deviation was greater than 15%, the data used in this 
study was free-access data from Landsat-8.

Recommendation
 The developed model can be used to estimates basal area, 
aboveground biomass and stand volume. However, larger 
number of samples should be collected to capture broader 
variance of the data and to represent more realistic output of 
the model as well. 

Acknowledgment
 The authors would like to thank PT Berau Coal which has 
give permission to carry out research in its mining area as 
well as providing support in the form of data (worldview1 
imagery) and accommodation during the data collection in 
the field. 

References 
Aguirre-villegas, H. A., & Benson, C. H. (2017). Case 

history of environmental impacts of an Indonesian coal 
supply chain. Journal of Cleaner Production, 157, 47–56. 
https://doi.org/10.1016/j.jclepro.2017.03.232

Ahmed, A., Zhang, Yun., & Nichols, S. (2011). Review and 
evaluation of remote sensing methods for soil-moisture 
estimation. SPIE Reviews, 2, 028001. https://doi.org/ 
10.1117/1.3534910

Ainiyah, N., Deliar, A., & Virtriana, R. (2016). The classical 
assumption test to driving factors of land cover change in 
the development region of northern part of West Java. The 
International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, XLI-B6, 
205–210. https://doi.org/10.5194/isprs-archives-XLI-
B6-205-2016

Apriyanto, D. P., Jaya, I. N. S., & Puspaningsih, N. (2019). 
Examining the object-based and pixel based image 
analyses for developing stand volume estimator model. 
Indonesian Journal of Electrical Engineering and 
Computer Sciences, 15(3), 1586–1596. https://doi.org/ 
10.11591/ijeecs.v15.i3.pp1586-1596

Arshi, A. (2017). Reclamation of coalmine overburden dump 
through environmental friendly method. Saudi Journal of 
Biological Sciences, 24(2), 371–378. https://doi.org/ 
10.1016/j.sjbs.2015.09.009

Bao, N., Li, W., Gu, X., & Liu, Y. (2019). Biomass estimation 
for semiarid vegetation and mine rehabilitation using 
worldview-3 and sentinel-1 SAR imagery. Remote 

Scientific Article

ISSN: 2087-0469

   

 

12

Figure 7  Model graph for estimating a) basal area, b) aboveground biomass, and c) stand volume.
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