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Canopy cover is one of the most important variables in ecology, hydrology, and forest management, and useful as a 
basis for defining forests. LiDAR is an active remote sensing method that provides the height information of an object 
in three dimensional space. The method allows for the mapping of terrain, canopy height and cover. Its only setback -  
is that it has to be integrated with Landsat to cover a large area. The main objective of this study is to generate the 
canopy cover estimation model using Landsat 8 OLI and LiDAR. Landsat 8 OLI vegetation indices and LiDAR-
derived canopy cover estimation, through First Return Canopy Index (FRCI) method, were used to obtain a 
regression model. The performance of this model was then assessed using correlation, aggregate deviation, and 
raster display. Lastly, the best canopy cover estimation was obtained using equation, FRCI = 2.22 + 5.63Ln(NDVI), 

2with R  at 0.663, standard deviation at 0.161, correlation between actual and predicted value at 0.663, aggregate  
deviation at -0.182 and error at 56.10%.
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Introduction
Canopy hydrology cover is one of the most important 

parameters used in ecology and forest management 

(Nakamura et al., 2017). It is defined as an area of land 
covered by vertical projections of canopies, which describes 

the structural conditions of a forest (Jennings et al., 1999). 
Furthermore, it is used as a critical variable for the definition 
and evaluation of forest gain (recovery) and loss (degradation 

and deforestation) (FAO, 2000). The measurement is useful 
for forest management applications such as for classification 
of forest structure, characterization of carbon sinks, forest 
fire behavior and fuel models, as well as the estimation of 

canopy light transmission (Ahmed et al., 2014). 
The measurement of a canopy cover can be obtained 

either directly on the field or based on remote sensing 
technology. Field measurement provides more accurate data 
but relatively laborious and expensive. Meanwhile, remote 
sensing technology such as LiDAR offers large spatial 
coverage of an area, more efficient in time, less financial cost, 
and less human resources, and also more powerful for the 

detection and segmentation of trees —(Zhen et al., 2016). The 
technology is expected to replace the field measurement 
method (Hyyppa et al., 2001; Kim et al., 2016; Jeronimo et 
al., 2018; Irlan et al., 2020). LiDAR is an active remote 
sensing technology that provides height information of an 

object (Jakubowski et al., 2013). It calculates a distance by 
emitting a laser pulse and calculating the return time from the 
laser to its sensor after being reflected. LiDAR is well-suited 
for canopy cover estimation since it can penetrate through 

the canopy (Korhonen & Morsdorf, 2014). Other benefits of 
using this system are: can be used during day and night, more 
effective and efficient in operational cost compared to 
terrestrial surveys, can provide high precision and accurate 
elevation data, and can process a large amount of data in a 

short period of time (Jakubowski et al., 2013). Although this 
technology has promising benefits, it is often limited in 
spatial coverage, and is relatively expensive due to its 
acquisition cost. To overcome this limitation, it can be 
integrated with another remote sensing technology. 

The integration LiDAR with Landsat 8 OLI is used to 
determine the potential of Landsat imagery, to accurately 
estimate forest canopy cover, in order to expand the 

measurement area (Ahmed et al., 2014).This integration 
could make LiDAR more cost-effective over larger areas 

(Hudak et al., 2002; Chen et al., 2012). The estimation of 
forest canopy cover can be obtained by using a regression 
between forest canopy cover, and vegetation indices that 
have been generated from LiDAR data and Landsat 8 OLI 
Imagery respectively. Vegetation indices are a mathematical 
combination or a transformation of spectral bands that 
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Data LiDAR data was acquired using an airborne method on 
October, 2014, and then formatted in LASer (LAS). LAS is a 
file format for the interchange of 3-dimensional point cloud 
data. Afterwards, LiDAR pulses were converted into point 
clouds which were used to calculate the canopy cover. 

The vegetation indices that have been proposed for 
determining the vigor and health of vegetation is intended to 
create better indices, which means that they take into account 
many factors, such as soil reflectance, atmosphere and 
vegetation density. All these improvements and 
modifications aim to get more reliable information about 

vegetation, based on their reflectances (Jakubowski et al., 
2013). Canopy cover measurement is difficult. LiDAR makes 
measurement is easier and faster, as well as the coverage can 
be wider. So that building models and validation through 
Landsat/SPOT will be more effective.  Therefore, the 
objective of this research is to examine the capability of 
vegetation indices to estimate forest canopy cover in dry 
lowland forests, in Sumatera Selatan, Indonesia. 

accentuate the spectral properties of green plants: therefore, 
they can appear distinct from one another in features. Another 
research showed a result if vegetation indices gave a good 
result for detecting growth using remote sensing with 
standards error 9.16% (Jaya et al., 2019).

Location This research was carried out in Harapan Forest of 
PT REKI, South Sumatera (Figure 1), which astronomically 
i s  l o c a t e d  a t  E 1 0 3 ° 7 ' 5 5 " – S 1 0 3 ° 2 7 ' 3 9 "  a n d  
S2°2'16"–S2°21'14" with elevation range of 30–120 m above 
the sea level. Administratively, it is located between 
Soralangun District and Batanghari District. This forest is a 
dry lowland type and is characterized by secondary forest, 
shrubs, opened area, and mixed plantations. The area has a 
humid tropical climate with even precipitation all year round 
and is divided into three categories: high, medium, and low 
secondary forest. In high secondary forest, the stratum 
consists of seedling (height < 1.5 m), sapling (heights > 1.5 m 
and diameter > 20 cm), pole (10 cm < diameter < 20 cm), and 
mature tree (diameter > 20 cm). The canopy cover in this 
category has a range between 71%–100%, and is dominated 
by Shorea sp., Litsea sp., and Palaquium sp. The medium is a 
transition between the high and low secondary forests. It has a 
canopy cover range of less than 40%, is dominated by pole 
(diameter 10–20cm), and is mostly covered by Shorea sp., 
Litsea sp., and Koompasia excelsa. The low secondary forest 
has a canopy cover of less than 40%, and is categorized as a 
very degraded forest (REKI, 2020). Shrubs and poles are 
commonly found in this region, with the low secondary forest 
particularly on the burnt areas. The LiDAR footprint located 
in the Harapan rainforest strips from west to east. LiDAR 
aquisition mode using full waveform dan discrete return with 
800 m flying height and 500 Khz laser pulse frequency. 

-2LiDAR point density has 8–15 points m  for the full 
-2waveform LiDAR and 6–8 points m  for the discrete return 

LiDAR. For scanning angle we used field of View (FOV) 56, 
swath width 851 m, and forward overlap 6% for full 
waveform and 80% forward overlap for discrete return 
LiDAR.

Methods

Preceding the calculation, the quality of the point clouds was 
investigated to make sure that they had a complete 
classification, and their heights represented the entire 
population in the area. This quality check was conducted 
because classification and heights were the most important 
variables. The points cloud which had a usual height was 
filtered out, and used to generate the digital terrain model 
(DTM). Normalization was then performed to get the actual 
height of the canopy cover. Canopy cover estimation was 
calculated using first return cover index (FRCI) method as 
shown in Equation [1] (Ma et al., 2017), which utilized only 
the first and the single returns, because it was assumed that the 
last and intermediate were only providing little additional 
information (Korhonen et al., 2011). 

         [1]

Landsat 8 OLI is a satellite imagery that offers large 
spatial coverage, and wide range of spectral resolution. The 
Landsat imagery of path 125, row 6 was obtained in July 2014 
from the United States Geological Surveys (USGS) 
(https://usgs.earthexplorer.com). This acquisition occurred 
three months before the LiDAR was obtained. Pre-processing 
data such as geometric and topographic correction  were 
applied based on illumination correction (Tan et al., 2013).  
Geographic correction was conducted to correct distortions 
and assign the properties (and practical value) of the map to 
the images (Green et al., 2000). It was performed by 
reprojecting the initial projection from WGS 1984 Zone 48 N 
to WGS 1984 Zone 48 S. Then, topographic correction was 
performed using terrain illumination correction model by 
combining the mathematical model and empirical rotation 
model (Hudjimartsu et al., 2017). The model was the 
improvement of topographic influence correction (Tan et al., 
2013). In mountainous areas, topography strongly influences 
the signal recorded by spaceborne optical sensors. In 
particular,  the same surface cover slopes oriented away from 
and towards the sun which would appear darker and brighter, 
respectively, when compared to a horizontal geometry 
(Richter et al., 2009). 

After the pre-processing had been carried out, the 
vegetation indices were calculated. Vegetation indices were 
calculated using raster calculator in Arcmap. Vegetation 
indices are defined as the mathematical transformation 
involving several bands from the optical sensors' imagery, 
which are used in creating new imagery that are more 
representative in presenting aspects related to vegetation. 

 The laser pulse transmitted by the LiDAR sensor can 
return as one (single return) or multiples returns (first, second, 
third, fourth and last return). Either the first canopy return or 
single canopy return is the most significance return, which is 
associated with the highest feature (tree canopy). To estimate 
the canopy cover, threshold for tree classification was set at 7 
m, based on the field observation. So, object below this height 
was not included in the calculation. The result of the 
estimation was a point feature generated from 30 m × 30 m 
grid area, following Landsat 8 OLI image resolution. This 
point feature was then overlaid with Landsat vegetation 
indices. The canopy cover estimation value ranged between 
0–100%.  
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[2]

Vegetation indices were also  derived from satellite data and 
have been widely used to assess variations in the 
physiological state and biophysical properties of vegetation 
(Huete et al., 2002). This study used normalized difference 
vegetation index (NDVI), green normalized vegetation index 
(GNDVI), and simple ratio vegetation index (SRVI) as 
predictors to predict the canopy cover estimation as shown in 
Equation [2], Equation [3], and Equation [4].

[4]

Refers to Equation [5], F(X, μ, σ) is the theoretical 
cumulative distribution function of the normal distribution 
function and (X) is the empirical distribution function of the 

note: Green = band with a wavelength of 500–600 nm; Red = 
band with a wavelength of 600–700 nm; NIR = band with a 
wavelength of 700–1000 nm.

Statistical methods: Building the regression model 
Regression model was used in canopy cover equation, with 
FRCI as dependent variable and vegetation indices as 
independent variable. Before developing the regression 
model, several tests such as classic assumption and 
correlation test were carried out. The classic assumption test 
is a prerequisite in developing a regression model. For 
constructing this model, data should: 1) have a normal 
distribution, 2) have a homoscedasticity of errors, 3) have no 
autocorrelation occurrences, and 4) have no multicollinearity 
for the model estimation by using more than one independent 
variable. This research was only using one variable and a 
single date imagery, therefore, only the normality and 
heteroscedasticity of data were tested.  The normality was 
tested using Kolmogorov-Smirnov test, which was first 
introduced by A. Kolmogorov (Kolmogorov, 1933) and later 
modified and proposed as a test by N. Smirnov (Smirnov, 
1948).

     [5]

[3]

bxExponential  : y = ae                                                      [8]

data. When the above equation results in large values of D, it 
indicates the data are not normal (Das & Imon, 2016). 
Heteroscedasticity test to find out whether there are 
differences in residual variance, from one observation to 
another. It is performed by the Glejser Test, using the SPSS 
program. The Glejser test is a well-known test for 
heteroscedasticity (Glejser, 1969), which is based on weak 
assumptions, and is very easy to implement. It checks for the 
presence of a systematic pattern in the variances of the errors, 
by estimating the auxiliary regression, where the absolute 
value of the residuals of the main equation is the dependent 
variable (Furno, 2005). The test decision is conducted when 
the significance value between the dependent variable and 
the residual value (Sig) is higher than 0.05. It means that 
there is no heteroscedasticity found in the data. Correlation 
test is used to determine the direction and strength of the 
relationship between two variables. While correlation 
measures the monotonic association between two variables. 
This monotonic relationship refers to a situation when both 
variables increases simultaneously, or when as one variable 
increases, the other decreases (Schober et al., 2018). The 
correlation test uses the equation as shown in Equation [6].

After building the regression model, an equation was 
2selected using the coefficient of determination (R ), the 

2standard error value (SE), and the analysis of variance. R  
shows the ability of the independent variable to explain the 
dependent variable. Furthermore, it describes and expresses 
the level of accuracy and closeness of the independent to the 

2 dependent variable as a percentage. R is calculated using the 
formula as shown in Equation [12] (Draper & Smith, 1998).

The canopy cover estimation model was prepared using 
the equation models as shown in Equation [7–11]

[6]

2Quadratic : y = a + bx + cx                        [11]

Note: r is the correlation coefficient, x  is the independent i

variable (vegetation index), and y  is the dependent variable i

(FRCI). Correlation coefficient values range between -1 ≤ r ≤ 
1.  A correlation coefficient closes to -1 indicates that there is 
a close relationship between the independent variable, and it 
has a negative slope for data distribution. Meanwhile, when 
it is close to +1, it shows that there is a close relationship 
between the free variable and the independent variable, and it 
has a positive data distribution slope. A regression model is 
prepared after the classic assumption and correlation test 
were done.

Linear  : y = a + bx                                                   [7]

Logarithmic : y = a + bln(x)                                           [9]
bPower : y = aX                                                     [10]

note: y = the percentage of canopy cover (FRCI); x = 
vegetation indices

[12]

note: MSS is the model sum of squares (also known as 
explained sum of squares/ESS) of the linear regression 
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Figure 1 Study area map.
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The Standard Error value indicates the average distance 
of observational data from the regression line. The smaller 
the SE value, the more precise the model is in predicting. The 
Standard Error value is calculated using the formula as 
shown in Equation [13]. 

[13]

note: S  is the standard error value, Y is the actual value of Y.X

canopy cover, and N-2 is the degree of freedom.

Model validation of regression All data in the LiDAR strip 
were utilized during the validation process using the census 
methods. The plots for validation must not be covered by 
clouds. Validation testing was performed using the 
correlation criteria between LiDAR FRCI and estimated 
FRCI value, aggregate deviation, and visual comparison of 
raster model estimation with LiDAR raster data display.

The correlation test between LiDAR FRCI value and the 
value of estimated FRCI from regression model was 
conducted by testing the correlation between the percent 
cover values of the estimator canopy model with the percent 
cover value of the LiDAR. The greater the correlation value, 
the more it shows that the value of the percent cover 
estimation model created has a close relationship with the 
percent cover value of the LiDAR header data (Drapper and 
Smith, 1992). 

prediction minus the mean for that variable. TSS is the total 
sum of squares associated with the outcome variable 
obtained from the sum of the squares of the measurements 
minus their mean. RSS is the sum of the squares of the 
measurements minus the prediction from the linear 
regression. 

Visual comparison of the raster model It is comparative 
assessment of raster model estimation display and LiDAR 
raster display performed by visualization. The LiDAR FRCI 
raster display was better than the raster model estimation 
when visually they have a similar appearance 

Selection of the best regression model It is obtained by 
scoring the correlation criteria and aggregate deviation 
values. Meanwhile, scoring is made by weighing the 
correlation value and the aggregate deviation. The best 
model has the highest scoring value. Meanwhile, the criteria 
for this highest score is a large correlation value and a small 
aggregate deviation value. Equation [15] and Equation [16] 
are the scoring formula (Jaya, 2010).

[14]

Aggregate deviation is the difference between the sum of 
the canopy density of estimator model and the percentage of 
canopy cover from LiDAR data. Good aggregate deviation 
values range from -1 to 1. Aggregate deviation values 
according to Drapper and Smith (1992) recalculated using a 
formula as shown in Equation [14].

note: Ct = canopy cover percentage from model estimation; 
Ca = canopy cover percentage from LiDAR

Model equation of canopy cover estimation and 
validation based on  and the relationship between Figure 2
FRCI and vegetation indices show positive connection. This 
means that an increase in the value of the vegetation indices 

 LiDAR data canopy cover calculations were performed 
by calculating the canopy cover in one Landsat pixel size of 
30 m  30 m. The percentage calculation of canopy cover ×
was performed using the FRCI method which is based on the 
reflection of the first and single return that hit the trees. These 
returns were defined as the point cloud having a minimum 
height of 7 m. The number of sample observations used for 
generating the model were 338 sample plots with the high 
density sample class contributing the highest at 125 plots or 
85.76% of the canopy cover per pixel. While the lowest 
contributor was the low density class which contributed only 
99  and had an average of 23.67% canopy cover per  plots
pixel. 

[16]

 [15]     

Plot sample identification The sample point was selected 
using purposive sampling by considering the presence of 
clouds, stand density based on canopy cover value, and 
canopy height (canopy height model). These points are 
scattered on the LiDAR line, in the work area of PT REKI. 
The distribution of sample points on the LiDAR footprint-
path at PT REKI is presented in  1.Table

The FRCI value represents the percentage of canopy 
cover in one pixel with a size of 30 m  30 m. It is strongly ×  
influenced by the specified height of the trees and the scan 
angle (Ma et al., 2017). The accuracy of FRCI values is 
influenced by the scan angle, because a large scan angle can 
cause inequality in tree canopy sampling. The error in its 
estimation can  be caused by the density of the LiDAR  also
point. However, increasing this density does not necessarily 
increase the accuracy of FRCI estimation due to excessive 
data and the effects of classification on LiDAR points (Ma et 
al., 2017).

Results and Discussion

 The correlation value for all vegetation indices on the 
overall index is positive, meaning that there is a positive 
linear relationship between independent and dependent 
variables. Therefore, an increase in the value of the 
independent variable will be followed by a simultaneous 
increase in the value of the dependent variable. Based on 
Table 2, there is a strong correlation between the independent 
variables, therefore only one was used in the preparation of 
the model to avoid multicollinearity. 

Correlation analysis Correlation analysis was performed to 
determine the relationship between the independent and the 
dependent variable. Furthermore, the independent variable 
was the vegetation index consisting of NDVI, SRVI, and 
GNDVI, while the dependent was the percent cover value of 
the LiDAR data from FRCI. Correlation value was obtained 
through Pearson correlation value. Pearson correlation test 
results between FRCI with vegetation index are presented in 
Table 2. 
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will cause a simultaneous increase in the FRCI value. 
However, this only applies to certain intervals of vegetation 
value. Based on Figure 2, it can be seen that the NDVI value 
is above 0.75, whatever the FRCI value might be, the index 
value will always be in the range of 0.75. When the SRVI 
value is above 7, regardless the FRCI value might be, the 
index value will always be in the range of 7. When the 
GNDVI value is in the range of 0.65, whatever FRCI value, 
the index will always be the same, in the range of 0.65. This 
can be due to the effect of the spectral sensor response factor 
on the vegetation. 

An increase in the value of the vegetation index is not 
always followed by an increase in the value of FRCI, 
especially in a vegetation that has reached stagnant growth. 
The research of Yengoh et al. (2015) said, when 
photosynthesis has reached its maximum, there will be no 

 The percentage of cover estimator model was made 
through a regression model with the dependent variable is 
the percentage of the cover canopy from LiDAR (FRCI) and 
the independent variable is the vegetation indexes. The 
regression analysis results of the percentage canopy cover 
estimator model are presented in Table 3.

Correlation value reflects the relationship between 
percentage of canopy cover from models and LiDAR. When 

 The result of the validation test in the correlation criteria 
between canopy cover value from LiDAR and canopy cover 
estimation from models shows that they have an average 
correlation of 0.554. The highest value was recorded in the 
R7 model with a correlation value of 0.663, while the lowest 
was in the R12 model with a value of 0.389. 

change in the NDVI value because all the visible light has 
been absorbed.

Figure 2 Correlation between FRCI and vegetation indices: (a) NDVI, (b) SRVI, (c) GNDVI.
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Table 3 Canopy cover model equation and validation test

Code
 

Equation
 

s
 

R2
 (%)

 

Factual

 

Correlation*
Aggregate 
deviation*

R1

 
FRCI

 
= -

 
5.24 + 7.77NDVI

 
0.159

 
64.70

 

615.69

 

0.658 -0.191
R2

 

FRCI

 

= -

 

1.35 + 0.275SRVI

 

0.153

 

67.30

 

691.64

 

0.605 -0.143
R3

 

FRCI

 

= -

 

4.88 + 8.69GNDVI

 

0.177

 

56.30

 

432.44

 

0.576 -0.187
R4

 

FRCI

 

= -

 

2.42 + 5.34NDVI2

 

0.157

 

65.40

 

635.58

 

0.651 -0.184
R5

 

FRCI

 

= -

 

0.440 +

 

0.0204SRVI2

 

0.152

 

67.50

 

698.04

 

0.562 -0.132
R6

 

FRCI

 

= -

 

2.20 +

 

7.03GNDVI

 

2

 

0.176

 

56.50

 

436.54

 

0.563 -0.184
R7

 

FRCI

 

= 2.22 + 5.63Ln(NDVI)

 

0.161

 

63.90

 

594.03

 

0.663 -0.182
R8

 

FRCI

 

= -

 

2.94 + 1.81Ln(SRVI)

 

0.156

 

66.10

 

656.35

 

0.639 -0.169
R9

 

FRCI

 

= 3.07 + 5.36Ln(GNDVI)

 

0.177

 

55.90

 

426.61

 

0.588 -0.200
R10

 

FRCI

 

=

 

0.0000004e(18.8NDVI)

 

0.316

 

72.90

 

904.65

 

0.497 -0.080
R11

 

FRCI

 

=

 

0.00530026e(0.647NDVI)

 

0.322

 

71.90

 

860.83

 

0.395 -0.090
R12

 

FRCI

 

= 0.0000014e(20.3X)

 

0.387

 

59.50

 

493.51

 

0.389 -0.221
R13 FRCI = 26.576NDVI890911.17

0.318 72.70 895.63 0.515 -0.169
R14 FRCI = 0.00011SRVI75.19 0.317 72.90 902.39 0.454 -0.113
R15 FRCI = 174.164GNDVI 296558.57 0.386 59.60 496.29 0.406 -0.180

Note: Ftable =3.87 ; *=Validation test criteria

Canopy cover class  Number of 
sample

Average canopy 
cover (% pixel-1)

Low (10%-39.6%)

 

99 23.67

Medium (39.6%-69.26%)

 

114 55.48
High (>69.26%) 125 85.76
Total number of samples 338

Table 1    Plot sample distribution
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this value is close to 1, it indicates a close relationship which 
means that the estimator value is getting closer to the actual 
value, showing that the model is getting better.

 The best canopy density estimation model according to 
Table 4 is the R7 model because, in addition with the NDVI, 
it has the highest score compared to other models. 
Furthermore, R7 has the equation,  = 2.22 + 5.63Ln FRCI
( ). Prasetyo et al., (2019) found that NDVI has a good NDVI
correlation with FRCI. Regression between LiDAR FRCI 
and FRCI models is intended to see how far FRCI values can 
explain the LiDAR FRCI and the errors generated from the 
regression model. The regression obtained the equation 
LiDAR FRCI = 0.332 + 0.712 FRCI R7, with 0.0150 as 
standard error and R  at 43.9%. This shows that the LiDAR 2

FRCI can be explained by the best FRCI model as 43.9%, and 
the resulting error is at 56.3%. These results indicate that 
there are still sizable errors because the FRCI variable can 
only be explained with LiDAR FRCI variable at 43.9%. 

Selection of the best regression model The best model was 
selected by scoring using correlation criteria and aggregate 
deviation values. The best model has the highest correlation 
value criteria and the smallest aggregate deviation value. The 
results of the scoring are presented in Table 4. 

Aggregate deviation is the difference between the 
percentage of canopy cover from models and LiDAR data. 
Deviation values have an average of -0,162. The largest 
aggregate deviation value was recorded in the R10 model 
with a value of -0.08, while the lowest was in the R12 model 
with a value of -0.221. Negative values have a tendency 
causing a deviation which tends to be lower than the actual 
value (underestimation). The raster display shows that of the 
15 models built, only 4 (R1, R3, R7 and R9) have a raster 
look that resembles a LiDAR raster.

Based on the results of model testing and validation, the 
FRCI NDVI = 2.22 + 5.63Ln ( ) model was obtained as the best 
to explain the relationship between LiDAR FRCI and 
vegetation index. The equation has an R  of 43.9%. Based on 2

this, it can be indicated that there are still some errors in the 
equation model. The error is allegedly caused by several 
factors such as the difference in acquisition time and spatial 
differences between LiDAR and satellite imagery. LiDAR 
was acquired on October 2014, while the Landsat imagery, 
which was used to create a vegetation index, was acquired on 
July on the same year. 

Discussion

Comparison between LiDAR raster display and the best 
chosen model This comparison was made to see the 
accuracy of the model in estimating the percentage of canopy 
cover. Figure 3 shows a comparison of the best LiDAR raster 
and landscape model displays in some regions in the LiDAR 
pathway.

Knowingly that PT REKI is a secondary forest, it is very 
possible that changes in land cover will occur, especially in 
the bushes. LiDAR and Landsat have spatial resolutions of 
0.5 and 30 m respectively. In addition, very detailed spatial 
resolution in LiDAR data enables a more accurate 
calculation of percentage of cover canopy and better 
identification between tree canopy and shrubs. However, 
calculating vegetation index values at 30 m will result 
resolution in more general values and cannot separate tree 
and non-tree class of vegetation. 

Figure 3 shows the inconsistency of the model in making 
estimations. This can be seen in some areas that have 
underestimated and overestimated values, indicated by red 
and blue circles, and which result in a low correlation value 
between LiDAR FRCI and the best FRCI model. Overall, the 
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Figure 3 Comparison of inconsistent pixel display between the best models and LiDAR. (a) The best raster model segment 15 in 
LiDAR line; (b) LiDAR raster segment of LiDAR line.

Table 4 Scoring result

(a) (b)
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Code  Aggregate deviation score  Correlation score  Total score  Ranking  
R7  4  4  8  1  
R1  3.832  2.590  6.422  2  
R3  1  3.215  4.215  3  
R9

 
1.404

 
1

 
2.404

 
4

 

 



 Figure 4 shows some differences between the pixels 
found in LiDAR, and in Landsat, especially in the model. The 
appearance of raster in the model image tends to have a more 
yellowish color when compared to the LiDAR raster. This 
indicates that the estimated value of the model was actually 
underestimated when compared to LiDAR. Besides the 
different raster displays, the effects of different spatial 
resolutions are also seen through the FRCI values on LiDAR, 
which are calculated using different resolutions, a resolution 
of 30 m and 0.5 m. A comparison of FRCI values is presented 
in Table 5.

The effect on different spatial resolution between LiDAR 
and landsat imagery To see the effects, it was performed by 
comparing several pixels on Landsat used manual 
interpretation with those on LiDAR, with the same land 
cover. For example, several pixels were taken in the segment 
1 of the LiDAR line. A comparison of the effects of spatial 
resolution between LiDAR and Landsat is presented in 
Figure 4.

best model was underestimated and therefore had low 
accuracy. Furthermore, its accuracy and consistency are 
influenced by several factors, including the difference in 
spatial resolution and in acquisition time between LiDAR 
and Landsat.

The effect on differeny acquisition date between LiDAR 
and landsat imagery To see the effect of the different 
acquisition date on the model prediction, several pixels in 
Landsat were compared with those in LiDAR raster on 
different land covers.  For example, several pixels were 
taken in the segment 1 of the LiDAR footprint-path. This 
comparison is shown in Figure 5.

 Table 5 shows the differences between LiDAR FRCI and 
FRCI values in Landsat. Furthermore, FRCI values in 
LiDAR have differences, when calculated at different 
resolutions. LiDAR FRCI values at 30 m resolution tend to 
have higher values when compared to the same values at a 
resolution of 0.5 m. In addition, the value of FRCI on LiDAR 
with a resolution of 0.5 m tends to have values that are closer 
to the FRCI model. This proves that the LiDAR spatial 
resolution used can affect the accuracy value of the model. 
The higher the spatial resolution of the image, the lower the 
effect of the problem of mixing pixels and has the potential to 
extract much more detailed information about land use or 
land cover structures.

 Figure 5 shows the difference between LiDAR and 
Landsat pixels.  Landsat and LiDAR pixels were acquired on 
July and October 2014, this times differences resulted in 
differences in land cover between LiDAR and Landsat 
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Figure 4 Pixel comparison between LiDAR and Landsat in an effect of a different spatial resolution 

Table 5  Comparison of LiDAR FRCI and Landsat at different spatial resolutions

( a ) LiDAR raster ( b )  Landsat 8 OLI in 6-5-4 composite ( c ) Best chosen model raster

Figure 5 Pixel comparison between LiDAR and Landsat in an effect of a different acquisition date. 

( a ) LiDAR raster ( b )  Landsat 8 OLI in 6-5-4 composite ( c )Best chosen model raster

Pixel  
FRCI value from LidaR (%)  FRCI from the best chosen 

model (%)

 

30 m resolution
 

0.5 m  resolution
 

1

 
99.80

 
88.30

 
85.30

 

2

 

99.50 

 

88.40

 

80.90

 

3
 

96.10
 

69.40
 

76.80

 

 

56

Jurnal Manajemen Hutan Tropika, 27(1), 50-58, April 2021 

EISSN: 2089-2063

DOI: 10.7226/jtfm.27.1.50



Acknowledgment

Chen, G., Hay, G. J., & St-Onge, B. (2012). A GEOBIA 
framework to estimate forest parameters from LiDAR 
transects, Quickbird imagery and machine learning: A 
case study in Quebec, Canada. International Journal of 

Conclusion  

The followings are the differences in FRCI values due to 
differences in acquisition time in Table .6

Table 6 shows that the value of LiDAR FRCI, with a 
spatial resolution of 30 and 0.5 m does not have a different 
FRCI value, but when it is compared to the FRCI values from 
the model, the difference is quite significant.The difference 
FRCI value between Lidar and model is due to the difference 
in acquisation time, as within that period, significant changes 
occurred in the level of vegetation in the forest.

pixels. In the case of the Landsat pixels, Figure 5 (b) shows a 
green color that indicates land cover with vegetation, while in 
Figure 5 (a), the red colored indicates a bare land cover. This 
results in differences in the value of FRCI on LiDAR and 
Landsat. 

Canopy cover measurement in the field is difficult. 
LiDAR makes the measurement easier and faster, as well as 
the coverage can be wider. So that building models and 
validation through Landsat/SPOT could be extended to 
larger areas.  The research is set to examine the capability of 
vegetation indices in estimating forest canopy cover in dry 
lowland forests in Sumatera Selatan, Indonesia.  This 
research concludes that the best regression model is the R7 
model. The equation of the regression is FRCI = 2.22 + 

25.63Ln (NDVI). It has R  of 63.80%, standard error of adj

0.161, correlation between actual FRCI and the alleged FRCI 
of 0.663, aggregate deviation of -0.182, and an error of 
56.10%. This model was underestimated and, therefore, has 
low accuracy. Furthermore, its accuracy and consistency are 
influenced by the differences in spatial resolution and 
acquisition time between LiDAR and Landsat.

References

This research was funded and supported by Forest2020. 
In addition, the authors would like to thank everyone that was 
involved in this research and the anonymous reviewer for 
helpful suggestions on the manuscript.

Ahmed, O. S., Franklin, S. E., & Wulder, M. A. (2014). 
Integration of LiDAR and Landsat data to estimate forest 
canopy cover in coastal British Columbia. 
Photogrammetric Engineering Remote Sensing, 80, 
953–961. https://doi.org/10.14358/PERS.80.10.953

Applied Earth Observation Geoinformation, 15, 28–37. 
https://doi.org/10.1016/j.jag.2011.05.010

Hudak, A. T., Lefsky, M. A., Cohen, W. B., & Berterretche, 
M. (2002). Integration of LiDAR and Landsat ETM+ 
data for estimating and mapping forest canopy height. 
Remote Sensing of Environment, 82, 397–416. 
https://doi.org/10.1016/S0034-4257(02)00056-1

Draper, N. R., & Smith, H. (1998). Applied regression 
analysis (3th ed.). New York: John Wiley & Sons.  

[FAO] Food and Agriculture Organization. (2000). On 
definitions of forest and forest change: FRA Working 
Paper 33. Rome: FAO.  

Furno, M. (2005). The Glejser test and the median 
regression. Sankhyā: The Indian Journal of Statistics, 67, 
335–358. 

Glejser, H. (1969). A new test for heteroscedasticity. Journal 
of the American Statistical Association, 64, 316–323. 

Das, K. R., & Imon, A. (2016). A brief review of tests for 
normality. American Journal of Theoretical Applied 
Statistics, 5, 5–12. http://doi.org/10.11648/j.ajtas.20160 
501.12

Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. 
(2000). Remote sensing handbook for tropical coastal 
management (A. J. Edwards, Ed.). Paris: United Nations 
Educational, Scientific and Cultural Organization 
(UNESCO).  

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & 
Ferreira, L. G. (2002). Overview of the radiometric and 
biophysical performance of the MODIS vegetation 
indices. Remote Sensing of Environment, 83, 195–213. 
https://doi.org/10.1016/S0034-4257(02)00096-2

Hudjimartsu, S., Prasetyo, L. B., Setiawan, Y., & Suyamto, 
D. (2017). Illuminating modelling for topographic 
correction of Landsat 8 and Sentinel-2A imageries. 
European Modelling Symposium (EMS), 2017, 95–99, 
https://doi.org/10.1109/EMS.2017.27

Irlan, Saleh, M. B., Prasetyo, L. B., & Setiawan, Y. (2020). 

Hyyppa, J., Kelle, O., Lehikoinen, M., & Inkinen, M. (2001). 
A segmentation-based method to retrieve stem volume 
estimates from 3-D tree height models produced by laser 
scanners. IEEE Transactions on Geoscience Remote 
Sensing, 39, 969–975. http://doi.org/10.1109/36.921414

Scientific Article

ISSN: 2087-0469

Table 6  Comparison of LiDAR FRCI and Landsat at different acquisition times

Pixel  
FRCI value from LidaR (%)  FRCI from the best choosen 

model (%)
 30 m resolution

  
0.5 m resolution

 1

 
0

 
0

 
72.00

 2

 

0

 

0

 
72.80

 
3

 

0

 

0

 

58.70

 
4

 

0

 

0

 

57.50

 

 

57

Jurnal Manajemen Hutan Tropika, 27(1), 50-58, April 2021 

EISSN: 2089-2063

DOI: 10.7226/jtfm.27.1.50

https://doi.org/10.14358/PERS.80.10.953
https://doi.org/10.1016/j.jag.2011.05.010
http://doi.org/10.11648/j.ajtas.20160501.12
https://doi.org/10.1016/S0034-4257(02)00056-1
https://doi.org/10.1016/S0034-4257(02)00056-1
https://doi.org/10.1109/EMS.2017.27
https://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1109/36.921414


Scientific Article

ISSN: 2087-0469

Jaya, I. N. S., Saleh, M. B., Noventasari, D., Santi, N. A., 
Anggraini, N., Sutrisno, D., ..., & Qian, L. (2019). The 
examination of the satellite image-based growth curve 
model within mangrove forest. Jurnal Manajemen Hutan 
Tropika, 25, 44–50. https://doi.org/10.7226/ jtfm.25.1.44

Evaluation of tree detection and segmentation algorithms 
in peat swamp forest based on LiDAR point clouds data. 
Jurnal Manajemen Hutan Tropika, 26, 123–132. 
https://doi.org/10.7226/jtfm.26.2.123

Jennings, S., Brown, N., & Sheil, D. (1999). Assessing forest 
canopies and understorey illumination: Canopy closure, 
canopy cover and other measures. Forestry: An 
International Journal of Forest Research, 72, 59–74. 

Jeronimo, S., Kane, van R., Churcill, D. J., Mcgaughey, R. J., 
& Franklin, J. F. (2018). Applying LiDAR individual tree 
detection to management of structurally diverse forest 
landscapes. Journal of Forestry, 116(4), 336–46. 
https://doi.org/10.1093/jofore/fvy023

Kim, E., Lee, W. K., Yoon, M., Lee, J. Y., Lee, E. J., & Moon, 
J. (2016). Detecting individual tree position and height 
using airborne LiDAR data in Chollipo arboretum, South 
Korea. Terrestrial, Atmospheric and Oceanic Sciences, 
27(4), 593–604. https://doi.org/10.3319/TAO.2016. 
03.29.01(ISRS)

Kolmogorov, A. (1933). Sulla determinazione empirica di 
una legge di distribuzione. Giornale dell'Istituto Italiano 
degli Attuari, 4, 83–91. 

Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. 
(2011). Airborne discrete-return LiDAR data in the 
estimation of vertical canopy cover, angular canopy 
closure and leaf area index. Remote Sensing of 
Environment, 115, 1065–1080. https://doi.org/10.1016/ 
j.rse.2010.12.011

Jakubowski, M. K., Guo, Q., & Kelly, M. (2013). Tradeoffs 
between LiDAR pulse density and forest measurement 
accuracy. Remote Sensing of Environment, 130, 245–253. 
https://doi.org/10.1016/j.rse.2012.11.024

Jaya, I. N. S. (2010). Analisis citra digital: Perspektif 
penginderaan jarak jauh untuk pengelolaan sumberdaya 
alam. Bogor: IPB Press.  

Korhonen, L., & Morsdorf, F. (2014). Forestry applications 
of airborne laser scanning. New York: Springer.  

Ma, Q., Su, Y., & Guo, Q. (2017). Comparison of canopy 
cover estimations from airborne LiDAR, aerial imagery, 
and satellite imagery. IEEE Journal of Selected Topics in 

Richter, R., Kellenberger, T., & Kaufmann, H. (2009). 
Comparison of topographic correction methods. Remote 
Sensing, 1, 184–196. https://doi.org/10.3390/rs1030184

Nakamura, A., Kitching, R. L., Cao, M., Creedy, T. J., Fayle, 
T. M., Freiberg, M., ..., & Ma, K. (2017). Forests and their 
canopies: Achievements and horizons in canopy science. 
Trends in Ecology Evolution ,  32 ,  438–451. 
https://doi.org/10.1016/j.tree.2017.02.020

Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & 
Tucker III, C. J. (2015). Use of the normalized difference 
vegetation index (NDVI) to assess land degradation at 
multiple scales: Current status, future trends, and 
practical considerations. New York: Springer.  

Tan, B., Masek, J. G., Wolfe, R., Gao, F., Huang, C., 
Vermote, E. F., ..., & Ederer, G. (2013). Improved forest 
change detection with terrain illumination corrected 
Landsat images. Remote Sensing of Environment, 136, 
469–483. https://doi.org/10.1016/j.rse.2013.05.013

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. 
(1974). Monitoring vegetation systems in the Great 
Plains with ERTS. In Third Earth Resources Technology 
Satellite-1 Symposium (pp. 309–317). NASA Goddard 
Space Flight Center.

[REKI] Restorasi Ekosistem. (2020). RKUPHHK-Restorasi 
Ekosistem 2011–2020. Jambi: PT REKI.

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation 
coefficients: Appropriate use and interpretation. 
Anesthesia Analgesia, 126, 1763–1768. https://doi.org/ 
10.1213/ANE.0000000000002864

Zhen, Z., Quackenbush, L. J., & Zhang, L. (2016). Trends in 
automatic individual tree crown detection and 
delineation Evolution of LiDAR data. Remote Sensing, 8, 
333. https://doi.org/10.3390/rs8040333

Smirnov, N. (1948). Table for estimating the goodness of fit 
of empirical distributions. The Annals of Mathematical 
Statistics, 19, 279–281. 

Applied Earth Observations Remote Sensing, 10, 
4225–4236. http://doi.org/10.1109/JSTARS.2017. 
2711482

Prasetyo, L. B., Nursal, W. I., Setiawan, Y., Rudianto, Y., 
Wikantika, K., & Irawan, B. (2019). Canopy cover of 
mangrove estimation based on airborne LiDAR & 
Landsat 8 OLI. IOP Conference Series: Earth and 
Environmental Science, 335, 012029. https://doi.org/ 
10.1088/1755-1315/335/1/012029

58

Jurnal Manajemen Hutan Tropika, 27(1), 50-58, April 2021 

EISSN: 2089-2063

DOI: 10.7226/jtfm.27.1.50

https://doi.org/10.7226/jtfm.26.2.123
https://doi.org/10.1016/j.rse.2012.11.024
https://doi.org/10.7226/ jtfm.25.1.44
https://doi.org/10.1093/jofore/fvy023
https://doi.org/10.3319/TAO.2016.03.29.01(ISRS)
https://doi.org/10.1016/j.rse.2010.12.011
http://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.1016/j.tree.2017.02.020
https://doi.org/10.1088/1755-1315/335/1/012029
https://doi.org/10.3390/rs1030184
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1016/j.rse.2013.05.013
https://doi.org/10.3390/rs8040333

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

