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PREDICTING SPATIAL DISTRIBUTION OF STAND VOLUME 
USING GEOSTATISTICS 

(Pendugaan Sebaran Spasial Volume Tegakan Menggunakan Metode 
Geostatistika) 
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ABSTRACT 

 
Pendugaan volume tegakan hutan alam biasanya dilakukan dengan metode penarikan contoh 

(sampling) non-spasial.  Dalam penelitian ini, dikembangkan metode pendugaan spasial dengan 
pendekatan geostatistika yang diterapkan untuk menduga dan memetakan sebaran volume tegakan 
di areal HPH Labanan, Kalimantan Timur. Pendugaan dilakukan dengan menggunakan metode 
kriging berdasarkan model spherical variogram dan data dari 1090 plot contoh.  Keakuratan hasil 
pendugaan diuji melalui validasi dengan menggunakan 272 plot contoh yang berbeda.  Hasil 
analisis menunjukkan bahwa volume tegakan memiliki korelasi spasial dengan keragaman yang 
cukup besar, namun tidak dijumpai adanya kecenderungan arah sebarannya.  Selain itu, dapat 
dibuktikan bahwa pendugaan dengan metode kriging dapat memberikan nilai dugaan volume 
tegakan dengan akurasi yang cukup tinggi.  Hal ini menunjukkan bahwa pendekatan geostatistika 
dapat digunakan sebagai metode alternatif dalam pendugaan dan pemetaan sebaran volume 
tegakan. 

Keywords: stand volume, sampling technique, geostatistics, spatial dependence  
variogram, kriging 

INTRODUCTION 

In any forest management activities, data and information concerning stand 
parameters, such as stand diameter, stand height, basal area, stand density, and stand 
volume, are absolutely required.  Commonly, these data are obtained by conducting forest 
inventory in a particular area or in the whole forest area.  In general, forest inventory is 
conducted to obtain information on the quantity, quality and condition of the forest 
resources that are being managed (Husch et al., 2002), particularly in order to estimate 
timber stocks. 

Among the other stand parameters, stand volume is the most commonly used 
parameter to quantify the timber stocks, particularly in a production forest. Usually, a stand 
volume estimation is required to determine an appropriate annual allowable cut (AAC) in a 
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forest management unit (FMU). Moreover, by knowing the stand volume, the forest 
managers will also be able to estimate total revenue that can be generated from their 
concession.   

Commonly, estimating stand volume for a large forest area is conducted by 
applying a sampling technique. In Indonesia, the standard sampling technique for 
conducting forest inventory in a natural production forest is systematic transect sampling 
with random start (Tiryana, 2003).  This technique is considered to be an effective way in 
estimating stand volume because it takes into account variations of the stand volume which 
may vary from site to site as the contour lines shift, and also because of its practicability in 
the fields (Shiver and Borders, 1996; Vries, 1986).  The average and total stand volume are 
then estimated based on stand volume of each sampling unit (i.e. transect with a given 
area) using non-spatial estimators such as ratio or regression estimator (Vries, 1986). 

Despite its applicability for estimating stand volume in a large forest area, the 
sampling technique as described above has a main drawback since it can not provide a 
means to estimate stand volume at unsampled forest areas; whereas the stand volume 
distribution on each forest site is absolutely required to manage the forest properly.  In 
addition, either the ratio or regression estimator as commonly used in the sampling 
technique is a biased estimator particularly when the sample size is small (Cochran, 1977).  
These facts indicate the need for developing another technique to spatially estimate stand 
volume distribution. In this context, geostatistical methods (such as kriging) provide a 
novel approach to predict the stand volume at unsampled locations based on spatial 
dependences among the observed samples (Nielsen and Wendroth, 2003; Rossiter, 2004; 
Saborowski and Jansen, 2002). In a forest stand, the spatial dependence may occur since 
site productivity has continuity in space, hence the stand volume would have spatial 
continuity as well (Nanos et al., 2004).  Accordingly, the geostatistical methods would be 
appropriate to be used in predicting spatial distribution of the stand volume. 

This paper describes the use of geostatistics as an alternative method to predict 
spatial distribution of stand volume in the natural production forest of Labanan concession, 
East Kalimantan, Indonesia.  More specifically, the objective of this study was threefold: 
1)   to model spatial dependence and trend of the stand volume distribution. 
2)   to analyze spatial factors affecting variation of the stand volume. 
3) to map stand volume distribution using the kriging methods. 

METHODS 

Data  

This study used forest inventory data from Labanan concession, East Kalimantan, 
Indonesia.  The data were collected by the company (i.e. PT. Inhutani I) in 1997 in order to 
provide a forest resources database for managing the natural production forests in the 
concession. 
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Figure 1.  Layout of the sample plots 
in the study area 

Forest inventory in the Labanan 
concession was conducted by applying 
systematic transect sampling with a spacing of 
about 5 km with azimuth 315o.  The sample 
plots were located along transects with a 
spacing 100 m (see Figure 1).  In each plot, tree 
measurements (i.e. dbh–diameter at breast 
height–and tree species) were conducted using 
three nested subplots, i.e. 0.125 ha for dbh >50 
cm, 0.04 ha for dbh 20-49 cm, and 0.0125 for 
dbh 10-19 cm.  Coordinates of centre plot were 
also recorded using GPS. The total size of 
sample was 1538 plots which covered 
approximately 0.24% of the total area of 
81224.79 ha (Gunawan, 2002). From the tree 
measurements, stand volume of each plot was 
determined using a volume table.  

Methods 

In this study, the geostatistical approaches were used to model spatial distribution of 
the stand volume as well as to predict stand volume at unsampled locations.  In details, the 
methods used in this study can be described as follows: 

Analyzing the data set 

The data set consists of 1362 sample plots located inside the study area.  This large 
amount of data was divided into two independent datasets, i.e. 1090 plots for modeling and 
272 plots for validation purposes.  The descriptive statistics was used to summarize both 
datasets. In addition, analysis of variance (anova) was also used to analyze some spatial 
factors affecting the variation of stand volume, namely slope, elevation, and geographical 
coordinate (x,y) which were derived from DEM (Digital Elevation Model) of the study 
area.  The significant factors, then, were used as auxiliary variables for predicting stand 
volume using the kriging method.   

Modelling spatial dependence and trend of the stand volume distribution 

In a geostatistical analysis, spatial dependence of the stand volume can be modelled 
using variogram.  Basically, a variogram is a statistical tool to measure spatial correlation 
between the two samples as a function of their separation  distance, which is calculated 
from sample data using the following formula (Cressie, 1991; Nanos et al., 2004; Rossiter, 
2004; Saborowski and Jansen, 2002): 
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where: ( )ˆ hγ  is semivariance of the stand volume for distance h, N(h) is the number of 
point pairs within distance h, whereas z(xi) and z(xi+h) are the stand volume at locations xi 
and xi+h, respectively. 

The best fitted variogram for the stand volume data was selected from the most 
commonly used variogram models as follows (Nangendo et al., 2002; Nielsen and 
Wendroth, 2003; Rossiter, 2004; Webster and Oliver, 2001):  
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• The exponential model:  ( ) ( )0 1 1
h
ah c c eγ −= + −  (3) 

• The Gaussian model:  (4) 
 

where: c0 is nugget effect, which represents 
unexplained variability at distance close to 
zero; c1 is sill, which represents variability 
when the observations become 
independence; a is range, which represents 
distance in which the spatial dependence 
would no longer exist.  Figure 2 illustrates 
such variogram features.  The modeling of 
variograms and other geostatistical 
computations were performed using the 
Gstat package of the R software (Pebesma, 
2004; see also: www.r-project.org). 

 
The spatial dependence of the stand volume may occur in omni-direction (called 

isotropy) or tend to a certain direction only (called anisotropy).  The anisotropic 
phenomenon was analyzed by plotting the directional variograms at different angles.  In 
addition, the variogram surface tool of the ILWIS software was also used to confirm 
whether or not the anisotropy existed in the stand volume distribution.  

Predicting the stand volume distribution  

One of the objectives of this study was to obtain a map, showing the stand volume 
distribution of the study area.  It can be obtained by using a geostatistical method known 
as kriging.  There were two kriging methods used in this study, namely ordinary kriging 
and universal kriging. 

Sill 

Range 

Nugget 

Figure 2.  A theoretical variogram 
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The ordinary kriging was used to predict stand volume at unsampled locations by 
using the selected variogram model obtained from the previous step and the stand volume 
data in the neighborhood of an estimated location (Nielsen and Wendroth, 2003; 
Wackernagel, 1998).  Meanwhile, the universal kriging was used to improve prediction of 
the stand volume by using an auxilary variable as complement to the other variables used 
in the ordinary kriging. The analysis of variance in the previous step would reveal which 
factors, i.e. slope, elevation, or coordinate, that could be used as an appropriate auxiliary 
variable.   

Validating the predictions  

To assess validity of the predictions produced by the krigings, a validation was 
carried out by comparing the predictions with 272 independent sample plots.  The 
following statistics were used to assess reliability of the predictons (Rossiter, 2004; 
Webster and Oliver, 2001): 

• Bias or mean error (ME), which should be zero (0): 
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• Mean squared deviation ratio (MSDR), which should be one (1): 
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where: iz  is observed stand volume, ˆiz is predicted stand volume, n is number of sample 

plots, and 2ˆ ( )ixσ is kriging variances. 

RESULTS AND DISCUSSION 

Characteristic of the stand volume and auxiliary variables 

Table 1 shows descriptive statistics of the stand volume and the auxiliary variables 
(i.e. slope and elevation) of the 1090 sample plots. 

Table 1.  Descriptive statistics of the stand volume and topographical factors 
Variable Statistic 

Volume (m3/ha) Slope (%) Elevation (m) 
Minimum 1.73 0.00 25.00 
Mean 159.65 14.23 132.01 
Maximum 620.77 176.60 250.00 
Standard deviation 90.31 18.23 53.28 
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The stand volume had large 
variation, i.e. ranged from 1.73 m3/ha to 
620.80 m3/ha, which means that the timber 
stocks were not evenly distributed in the 
study area. Based on the Shapiro-Wilk 
test, i.e. W=0.9505 and p-value <2.2e-16, 
at 5% of confidence level there was an 
evidence that the stand volume data were 
not normally distributed as seen in Figure 
3.  To facilitate the geostatistical analyses, 
which require normality of the data, the 
stand volume data were transformed into 
the squared root scale. 

For the slope and elevation, it can 
be seen that the sample plots were mostly 
located in flat areas. Indeed, the Labanan 
forest is a low land tropical forest. 
 
 
Factors affecting the stand volume distribution 

Table 2 shows analysis of variance for the auxiliary variables, i.e. slope, elevation, 
and the geographical coordinate (x,y).   

Table 2. Analysis of variance of the auxiliary variables 

Analysis of variance Factor 
Adjusted R2 (%) F-test p-value 

Slope 0.39 5.242 0.0222* 
Elevation 0.07 0.736 0.3912 
Geographical coordinate (x, y) 6.13 36.56 4.297e-16** 

*significant at 5% of confidence level,  **highly significant at 1% of confidence level 

The results showed that, at 5% confidence level, the slope had significant effect to 
the variation of stand volume.  However, due to only 0.39% of the total variance which 
can be explained by the slope, it could not be used as an auxiliary variable for the universal 
kriging.  Likewise, the elevation had no significant effect to explain variation of the stand 
volume.  The main reason is that the sample plots were taken from the almost uniform 
conditions with little variations in their slope and elevation, since the Labanan forest is 
located in a low land area.  Obviously, only the geographical coordinate had significant 
effect in which it explained about 6.13% of the total variation of the stand volume.  
Although, its adjusted-R2 value was not so high, it could be used as an auxiliary variable to 
improve prediction of the stand volume using the universal kriging.   

Figure 3.  Distribution of the stand volume 
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Spatial dependence of the stand volume   
As mentioned before, the variogram can be used to model spatial dependence of the 

observed attributes.  Table 3 presents the parameters of the three variogram models that 
were used to explain spatial dependence of the stand volume. 

Table 3.  Parameters of the variogram models 

Variogram model Parameter 
Spherical Exponential Gaussian 

Nugget 9.65 9.50 9.92 
(total) Sill 12.80 13.21 12.71 
Range (m) 6870 3578 2886 
Sum squared error (SSErr) 0.0021 0.0019 0.0017 

 
All the variogram models have low 

SSErr values, but they are not significantly 
different.  Although the Gaussian model has 
lowest SSErr, it has the shortest range 
compared to the others.  Therefore, it was 
considered that the spherical model is better 
than the others because it has longer range, 
hence it would explain better the spatial 
dependence of the stand volume.  The 
spherical model was also used by Nanos et 
al. (2004) to develop a model for predicting 
spatially the stand height–diameter 
relationship. Visually, this variogram model 
is depicted in Figure 4.   

Based on the spherical variogram, it 
can be concluded that the longest distance in 
which spatial dependence of stand volume 
would still exist is approximately 6870 m 
with the total variability at this distance 
onwards is 12.80 (m3/ha)2           (in squared-
root scale).  While, at distance close to zero 
there is still high variability (nugget effect), 
i.e. 9.65 (m3/ha)2 (in squared-root scale).   

This large nugget effect indicates that in each sample plot, the variability of stand 
volume is relatively high. This is due to the fact that in each plot there were mixed trees 
with three different diameter classes (i.e. trees with diameter 10-19 cm, 20-49, and ≥50 
cm), whereas the stand volume was calculated by aggregating volume of these trees.  
Another reason is that the size of sampling unit (i.e. inventory plot) was too small to 
capture spatial variability in the heterogeneous tropical forest.  Indeed, in the standard 
forest inventory for the natural forests, the common sampling support is continuous 
transects instead of clustered plots (Tiryana, 2003; Vries, 1986).   

Figure 4. The spherical variogram of 
the stand volume 
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Anisotropic issue  
Figure 5 shows the directional 

variograms at the nine different angles. 
It seems that the anisotropy would 
occur at direction 112.50 because it has 
longest distance (approximately 16973 
m with nugget 9.05 and total sill 12.07) 
as compared to the others.  However, it 
does not provide sufficient evidence 
since we only judged it visually.  
Further analysis using the variogram 
surface (the result is not shown here) 
revealed that obviously there was no 
pattern showing anisotropy, such as an 
ellipse-like pattern in a certain 
direction.   

Therefore, we concluded that 
there was no anisotropy found in the 
stand volume distribution.  It means that 
there were no spatial variability changes 
with direction of the stand volume. 

 

This is possibly due to the sample plots which were not evenly distributed in the 
field, so that they could not be able to capture spatial variability of stand volume in all 
possible directions.  Indeed, the sample plots were located along transects at spacing 100 
m between plots and about 5 km between transects. 

Prediction of the stand volume  
The stand volume distribution of the whole study area was predicted using the 

ordinary kriging and the universal kriging.  The results were prediction maps as shown in 
Figure 6 and Figure 7.   

Obviously, there are some differences in both prediction maps, particularly in the 
areas away from the sample plots. From Table 4, it can be seen that the ordinary kriging 
produced predictions higher than the universal kriging, although the differences seem not 
so significant.  In addition, both krigings produced the prediction errors as summarized in 
Table 5.  It can be seen that the errors produced by the universal kriging are lower than 
those of the ordinary kriging, particularly for the areas around the sample plots. 

 
 

 
 
 
 

Figure 5. The directional variograms of the 
stand volume 
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Figure 6.  Prediction map of the stand volume obtained from the ordinary kriging (not to 
scale).  The values are squared-root of stand volume in m3/ha.  

Figure 7.  Prediction map of the stand volume obtained from the universal kriging (not 
to scale).  The values are squared-root of stand volume in m3/ha.  
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Table 4. Descriptive statistics of the predictions obtained from the ordinary kriging and 
the universal kriging 

Statistics Kriging 
method Minimum 1stquartile Median Mean 3rdquartile Maximum 

Ordinary 
kriging  

8.46 11.33 12.18 12.21 12.94 17.07 

Universal 
kriging  

8.53 11.03 12.13 12.08 13.10 17.20 

Difference *) -1.57 -0.26 0.01 0.12 0.35 3.65 
*) the differences were calculated from all prediction values of both krigings 
 
Table 5. Descriptive statistics of the prediction errors produced by the ordinary kriging 

and the universal kriging 

Statistics Kriging 
method Minimum 1stquartile Median Mean 3rdquartile Maximum 

Ordinary 
kriging  

10.21 10.65   11.06 11.29 11.75 12.95 

Universal 
kriging  

10.26 10.55 11.02 11.32 11.91 13.66 

Difference *) -0.71 -0.12 0.004 -0.024 0.08 0.22 
*) the differences were calculated from all prediction error values of both krigings 

 
The results revealed that predictions of the stand volume using the ordinary kriging 

and the universal kriging seem not so much different.  However, the universal kriging 
performed better than the ordinary kriging.  It was proven that by incorporating the 
auxiliary variable (i.e. geographical coordinate) into model, the prediction could be 
improved.  In this case, the coordinate gives the advantage in adjusting local variability of 
the stand volume so that the prediction errors around sample plots would become lower. 
However, for the unsampled area or for the areas away from the sample plots, the 
universal kriging cannot well-predict the stand volume due to the absences of local trend, 
so that the variance of prediction is higher for those areas. 

Validation of the predictions  
Table 6 shows the results of validation using 272 independent sample plots.  

Obviously, there were no so much differences regarding accuracy of the predictions 
obtained from the ordinary kriging and the universal kriging.  However, it seems that the 
universal kriging performed better than the ordinary kriging, particularly in terms of the 
mean error (ME) and the mean squared deviation ratio (MSDR).  The validity measures 
confirmed that both krigings produced low bias (mean error), low RMSE, and low (i.e. 
close to one) MSDR.   
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Table 6.  The results of  validation  

Statistics Kriging method 
ME RMSE MSDR 

Ordinary kriging 0.439 3.206 0.993 
Universal kriging 0.437 3.220 0.999 

 
Compared to the existing stand volume prediction (see Table 7), which was 

calculated using the non-spatial method (Gunawan, 2002), the ordinary kriging and the 
universal kriging produced underestimate predictions, approximately 20% lower than the 
existing prediction.  Nevertheless, the predicted stand volume, either in total or average, 
which were obtained by squaring each prediction value, of both kriging seem to be 
reasonable.     

Table 7.  Comparison of the stand volume predictions 

Predicting method Stand volume 
Ordinary kriging Universal kriging Non-spatial *) 

Total volume (m3) 12,256,365 12,075,264 15,413,536 
Average (m3/ha) 150.90 148.67 189.78 

*) Source: Gunawan (2002)   
 

The results revealed that both krigings provided reliable predictions of the stand 
volume.  Since there are no significant differences of both krigings, it can be considered 
that the ordinary kriging would still give reliable predictions when the auxiliary variable 
was absent.  In such case, the ordinary kriging has advantage because it uses less 
parameters in the model (Cressie, 1991) compared to the universal kriging.  

CONCLUSIONS 

Based on this study, the following conclusions can be derived: 
1. The stand volume distribution in the Labanan concession area has spatial dependence 

with high local variability.  However, there was no spatial direction of such 
distribution. 

2. The ordinary kriging and the universal kriging have provided reliable and reasonable 
predictions of the stand volume.  By using the ordinary kriging, total volume of the 
Labanan concession was estimated as 12,256,365 m3 or in average 150.90 m3/ha.  
Meanwhile, the universal kriging estimated total volume as 12,075,264 m3 or in 
average 148.67 m3/ha. 

3. In absence of an appropriate auxiliary variable, the ordinary kriging would still give 
reliable prediction of the stand volume. 

4. The geostatistical method can be used as an alternative to spatially predict the 
distribution of stand volume in a large forest area. 
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