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Abstract. This paper is concerned with the problem of estimating the
error rate in two-group discriminant analysis. Here, behaviour of 19
existing error rate estimators are compared and contrasted by mean of
Monte Carlo simulations under the ideal condition that both parent po-
pulations are multivariate normal with common covariance matrix. The
criterion used for comparing those error rate estimators is sum squared
error (SSE). Five experimental factors are considered for the simulation,
they are the number of variables, the sample size relative to the number
of variables, the Mahalanobis squared distance between the two popu-
lations, dependency factor among variables, and the degree of variation
among the elements of the mean vector of the populations. The result
of the simulation shows that there is no estimator performing the best
for all situations. However, on overall, the Finite Mixture Balanced
bootstrap estimator (FMB) proposed by Mangku (2007) is the best es-
timator.

Key words: Discriminant analysis, classi¯cation rule, probability of mis-
classi¯cation, actual error rate, Monte Carlo simulation.

1. Introduction

One of the problems in two-groups discriminant analysis is as follows.
Given the existence of two groups of individuals, one want to ¯nd a clas-
si¯cation rule for allocating new individuals (observations) into one of the
existing two groups. Corresponding to each classi¯cation rule, there is a pro-
bability of misclassi¯cations if that classi¯cation rule is used to classify new
individuals (observations) into one of the two groups. The best classi¯cation
rule is the one that leads to the smallest probability of misclassi¯cations,
which also called error rates.
There are three types error rates that have been frequently considered for

study, namely: (i) the optimum error rate, which describes the performance
of a classi¯cation rule based on known parameters, (ii) the conditional er-
ror rate, which describes the performance of a classi¯cation rule based on
parameters estimated by the statistics computed from the training samples,
and (iii) the expected error rate, which describes the expected performance
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of a classi¯cation rule based on parameters estimated by a randomly chosen
training sample.
In practice, the parameters are rarely known, and the expected (or uncon-

ditional) error rates depend heavily on the distribution of the discriminant
function, which is very complicated. Consequently most work associated
with error rate have assumed that the samples, which are used to construct
the estimated classi¯cation rule, are ¯xed. This leads to the exploration of
the conditional error rate. Here the word conditional refers to the condition-
ing of the training samples from which the classi¯cation rule is constructed.
One may also think of this as the probability that the given classi¯cation
rule would incorrectly classify a future observation. It should also be noted
that the conditional error rate is the error rate that is important to an exper-
imentor who has already determined the classi¯cation rule. This conditional
error rate is also referred to as the actual error rate or the true error rate
by many authors. Hence, in this paper we concentrate only on the actual
error rate and its estimation.

2. Classification rule

The classi¯cation rule used in the current study can be described as fol-
lows. Recall that we restrict our study to discriminant analysis problems
involving only two groups or populations. These groups are denoted by ¦1
and ¦2. Suppose that X = (X1;X2; : : : ;Xp)

T is a p-dimensional vector
of random variables associated with any individual. We assume that X has
di®erent probability distributions in ¦1 and ¦2. Let x be the observed value
of X (for an arbitrary individual), f1(x) be the probability density of X in
¦1, and f2(x) be the probability density of X in ¦2. Then the simplest
intuitive classi¯cation decision is: classify x into ¦1 if it has greater proba-
bility of coming from ¦1, that is if f1(x)=f2(x) > 1; or classify x into ¦2
if it has greater probability of coming from ¦2, that is if f1(x)=f2(x) < 1;
or classify x arbitrarily into ¦1 or ¦2 if these probabilities are equal or if
f1(x)=f2(x) = 1.
In real situations it is reasonable to consider some important factors such

as prior probabilities of observing individuals from the two populations and
the cost due to misclassi¯cations. However, in this paper, only the case
with equal prior probabilities and equal cost due to misclassi¯cations is
considered.

A variety of classi¯cation rules has been established in the literature. The

earliest and most well-known rule is Fisher's (1936) Linear Discriminant

Function (LDF). Let ¹
i
= (¹i1; ¹i2; : : : ; ¹ip)

T , be the means and §i be the

covariance matrices ofX in ¦i (i = 1; 2). It is often assumed that §1 = §2 =

§. Let ¹x1; ¹x2;S1;S2; and S be the sample estimates of ¹1; ¹2;§1;§2 and §

respectively, using independent random samples of size n1 and n2 from ¦1

and ¦2. Denote these random samples (also called training samples) by t1

and t2 respectively, and let t = ft1; t2g be the entire set of training data of
n = n1 + n2 observations. Also let Np(¹;§) denotes the p-variate normal
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distribution with mean ¹ and covariance matrix §. The estimated Fisher's

LDF is then given by

L(x) = xTS¡1(¹x1 ¡ ¹x2): (2.1)

This LDF was adopted later by Anderson (1951) to obtain a classi¯cation

statistics W (x), given by

W (x) =W (x; t) =

µ
x¡ 1

2
(¹x1 + ¹x2)

¶T
S¡1 (¹x1 ¡ ¹x2) : (2.2)

Using this rule, a new individual x will be allocated into ¦1 if W (x) ¸ 0,

otherwise into ¦2. In this paper (2.2) is considered as our classi¯cation rule,

and sometime the notation W (x; t) is used, to give an emphasize that this

classi¯cation rule is constructed using the training sample t, to classify the

new individual x.

3. Simulation Study Plan

In this comparative study, some existing estimators are compared and

contrasted using Monte Carlo simulations. The usefulness of a Monte Carlo

assessment is that the population parameters and the true distribution from

which the training data are obtained are known, thus the true error rates

(in our case the actual error rate) can always be computed. Hence, the esti-

mated error rates can be compared with the true error rate for choosing the

best estimator. In this comparative study, behaviour of the 19 estimators

are compared and contrasted under ideal conditions that both parent popu-

lations are multivariate normal with common covariance matrix. Those 19

estimators are: Resubstitution (R) (Smith, 1947), OS (Okamoto, 1963), M

(McLachlan, 1974a), NS (Glick, 1978), U (Lachenbruch, 1967), ¹U (Lachen-

bruch and Mickey, 1968), Jackknife (JK) (Efron, 1982), In¯nite Seperate

Efron (ISE) (Efron, 1983), In¯nite Mixture Efron (IME) (Efron, 1983), In-

¯nite Seperate Chatterjee (ISC) (Chatterjee and Chatterjee, 1983), In¯nite

Mixture Chatterjee (IMC) (Chatterjee and Chatterjee, 1983), Finite Seper-

ate Efron (FSE) (Efron, 1983), Finite Mixture Efron (FME) (Efron, 1983),

Finite Seperate Chatterjee (FSC) (Chatterjee and Chatterjee, 1983), Fi-

nite Mixture Chatterjee (FMC) (Chatterjee and Chatterjee, 1983), In¯nite

Seperate Balanced (ISB) (Mangku, 2007), Finite Seperate Balanced (FSB)

(Mangku, 2007), In¯nite Mixture Balanced (IMB) (Mangku, 2007) and Fi-

nite Mixture Balanced (FMB) (Mangku, 2007).
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The overall error rates (estimated and actual) from these Monte Carlo

simulations are used for comparisons. Computer programs written in GAUSS

are used in these simulation studies. Although various criteria have been

looked at in the past to evaluate and compare the error rate estimators, the

most popular choice was the mean squared error (MSE) criterion. One of

the earlier authors employing this criterion was McLachlan (1974a, b, c),

though more recently Efron (1983), Snapinn and Knoke (1984, 1985), Gane-

shanandam and Krzanowski (1990), and some others have also utilizedMSE

in their evaluations. The MSE relative to the actual error rate is de¯ned as

MSE = E(P̂ ¡ AC)2 where P̂ denotes the estimated error rate, AC is the

actual error rate, and the expectation is taken with respect to all possible

sets of simulated training samples.

The criterion that we use in this study is the sum square error, denoted

by SSE, equals to k x MSE. Hence, this criterion has similar properties to

that of the MSE criterion. Here k is the number of simulated training data.

The consequence is that the smaller is the SSE the better is the error rate

estimator.

Without loss generality, it is assumed that mean vectors ¹
1
= O, ¹

2
= ¹

and covariance matrices §1 = §2 = §. We further assume that all vari-

ables are standardized so that the common covariance matrix § is in fact

a correlation matrix. The simulation plan used here is similar to that of

Ganeshanandam and Krzanowski (1990).

Five experimental factors are considered for the simulation of ideal mul-

tivariate normal data:

(a) p : the number of variables, considered at 2 levels: p = 5, 10.

(b) f : the sample size relative to p , considered at 2 levels: f = small ,

large. Equal sample sizes used, i.e. n1 = n2 = n¤ (say), thus for p =

5, n¤ = 10 or 20 and for p = 10, n¤ = 20 or 40.

(c) ¢2 : the true Mahalanobis squared distance between ¦1 and ¦2, con-

sidered at 3 levels: ¢2 = 1.098 ( closed populations ), 2.836 ( medium

separation ), and 6.574 ( well separated populations ).

(d) º : the dependency factor, considered at 2 levels: º = 0.4, 0.8 (depen-

dence among variables increases as º decreases from 1, 0 < º · 1).
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(e) d : the factor to determine the elements ¹k of ¹, considered at 2 levels:

d = 0.4 (large di®erences among ¹k), 0.8 (small di®erences among ¹k)

and 0 < d · 1.

Hence, the simulation plan is a 2x2x3x2x2 factorial experiment consisting

of 48 di®erent combinations. This simulation study plan attempts to gener-

ate more realistic data to resemble real life data, and to cover a wide variety

of ideal conditions.

4. Generation of the Training Data

Once the values of p and f are ¯xed, the factor º determines the eigenval-

ues ¸i of § as ¸i = aº
i¡1+0:1 for i = 1; 2; : : : ; p with a = 0:9p(1¡º)=(1¡ºp)

if 0 < º < 1 or a = 0:9 if º = 1. If E is the matrix of eigenvectors of § and

¤ is the diagonal matrix of eigenvalues ¸i, then as we can write § = E¤E
T ,

we only need a random orthogonal matrix E generated to compute §. Hav-

ing determined the eigenvalues, Lin and Bendel's (1985) algorithm can be

used to generate random population correlation matrices with these speci¯ed

eigenvalues. Factor d is used as an attempt to generate more realistic values

for the elements ¹k in the mean vector ¹, than just the simple case of having

zeros in all positions except the ¯rst. Then we compute ¹¤i =
p
−di¡1 for

i = 1; 2; : : : ; p and 0 < d · 1, where − = ¢2(1¡ d)=(1¡ dp) if 0 < d < 1 or
− = ¢2=p if d = 1. The elements ¹i are then obtained from ¹ = R¹¤ where

§ = RRT is given by the Cholesky's decomposition and ¹¤ = (¹¤1; : : : ; ¹
¤
p)
T .

Finally, the desired p-variate observation vector x is obtained by, ¯rst gen-

erating a vector y of p independent N(0; 1) values and then transforming it

into x = ¹+Ry.

5. Calculation of The Actual Error Rate

The actual error rates of the linear discriminant function W (x; t) are

given by

P1 = P(W (x; t) < 0 when x is from ¦1jt ¯xed);

P2 = P(W (x; t) ¸ 0 when x is from ¦2jt ¯xed): (5.1)

Here, P1 represents the probability of classifying the new individual x in

to ¦2 when it is actually belong to ¦1 and P2 represents the probability of

classifying the new individual x in to ¦1 when it is actually belong to ¦2.
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The overall actual error rate is then de¯ned by

AC =
n1

n1 + n2
P1 +

n2
n1 + n2

P2: (5.2)

Under the assumptions that X » Np(¹1;§) on population ¦1 and X »
Np(¹2;§) on population ¦2, it can easily be shown that

P1 = ©

264¡
³
¹
1
¡ 1

2(¹x1 + ¹x2)
´T
S¡1(¹x1 ¡ ¹x2)

((¹x1 ¡ ¹x2)TS¡1§S¡1(¹x1 ¡ ¹x2))
1=2

375 (5.3)

and

P2 = ©

264
³
¹
2
¡ 1

2(¹x1 + ¹x2)
´T
S¡1(¹x1 ¡ ¹x2)

((¹x1 ¡ ¹x2)TS¡1§S¡1(¹x1 ¡ ¹x2))
1=2

375 (5.4)

where © is the distribution function of a standard normal variate.

From the expressions above, we can see that the arguments are still func-

tions of unknown parameters, so these error rates can not be computed

directly from the given training data alone. Consequently a procedure for

estimating these error rates is needed.

We generated 50 replicates for each of the 48 sampling situations. The

actual error rate AC and the overall error rate estimate from each of R,

OS, M, NS, U, ¹U , JK, ISE, IME, ISC, IMC, FSE, FME, FSC, FMC, ISB,

FSB, IMB and FMB, estimators were computed for each replicate. The SSE

criterion was then computed as

SSE =
50X
i=1

(P̂i ¡ACi)2;

where P̂i and ACi are the estimates and the actual of the overall error rates

computed from the i-th replicate of a given Monte Carlo sampling situation.

6. Monte Carlo Results and Discussions

First, the e®ects of the experimental factors p , f , ¢2, º and d on the error

rate estimators are examined. Recall that the Monte Carlo study plan is a

balanced factorial experimental design. Note also that, since all of the error

rate estimators are applied to the same set of simulated training samples, the

19 values of P̂i are correlated in each of the 50 replicates. Hence, the values

of the criterion SSE are correlated. In such a situation, a Repeated Measures

Analysis of Variance (Hand and Taylor, 1987) is appropriate, where the error

rate estimators can be treated as the repeated measures. Performance of the
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various error rate estimators are then examined using means of the error

rates and the SSE with respect to the signi¯cant experimental treatment

e®ects.

The statistical computing software SAS was used to carry out the above

analysis. The result of the Repeated measures analysis is presented in Table

1. Here the levels of the factor error rate estimation methods, denoted by

METH, are the nineteen error rate estimators explained in section 3. In this

table, the ANOVA of the experimental factors and their interactions are

given in the main plot stratum, whereas the repeated factor METH together

with its interactions with all experimental factors are shown in the split

plot stratum. For ease of interpretations and to avoid complexity, the order

of interactions were kept to 1 among the main plots and to 2 in the split

plot stratum. Because of the large number of replicates in the experiment,

the F -ratios are also treated as guides to the relative importance of the

corresponding treatment e®ects besides the absolute tests of signi¯cance.

Consider ¯rst the main plot stratum of Table 1. This table shows that,

only the main e®ects of the experimental factors f and º, and the e®ect

due to the interaction p x º are highly signi¯cant. This means that the

estimation of the actual error rates, on average, is heavily dependent on

the size of training samples, the inter-dependence of the variables, and the

number of variables in the data. The Mahalanobis squared distance factor

¢2 also has some noticeable e®ect (signi¯cant at 6%) on the error rates.

Further, the split plot stratum shows that the e®ects ofMETH factor and

its interaction with p, f , p x f , ¢2, p x ¢2, f x ¢2, º, p x º and f x º are all

signi¯cant. This not only suggests that there are di®erences in SSE among

some of the estimators, but also indicates that the comparisons among these

estimators must be based on the experimental factors p, f , ¢2, and º. The

in°uence of the factor f or the size of samples, on the error rate estimators

in a sum-square-error sense, is much higher than that of the factors º, p,

and ¢2. This argument is due to the corresponding F -ratios being 102.15,

37.60, 34.07, and 28.10, respectively.
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Table 1: Main plot and Split plot stratum of the Repeated measures
ANOVA for the e®ects of the experimental factors on all methods.

SOURCE DF SS MS F -ratio p-value
Main Plot

p 1 0.0301 0.0301 0.05 0.8183
f 1 20.9479 20.9479 37.45 0.0001

p * f 1 0.0024 0.0024 0.00 0.9486
¢2 2 3.6752 1.8376 3.29 0.0528

p * ¢2 2 0.3081 0.1541 0.28 0.7614
f * ¢2 2 0.9287 0.4644 0.83 0.4467
º 1 21.8065 21.8065 38.99 0.0001

p * º 1 4.5692 4.5692 8.17 0.0081
f * º 1 0.6516 0.6516 1.17 0.2900
¢2 * º 2 0.2379 0.1190 0.21 0.8098
d 1 0.3401 0.3401 0.61 0.4423

p * d 1 0.2266 0.2266 0.41 0.5298
f * d 1 0.0329 0.0329 0.06 0.8101
¢2 * d 2 0.6095 0.3048 0.54 0.5861
º * d 1 0.3338 0.3338 0.60 0.4465

ERROR 27 15.1007 0.5593

Split plot

METH 18 23.7213 1.3179 383.53 0.0001
METH * p 18 2.1073 0.1171 34.07 0.0001
METH * f 18 6.3178 0.3510 102.15 0.0001

METH * p * f 18 0.6583 0.0364 10.64 0.0001
METH * ¢2 36 3.4759 0.0966 28.10 0.0001

METH * p * ¢2 36 0.5016 0.0139 4.05 0.0001
METH * f * ¢2 36 0.8158 0.0227 6.60 0.0001
METH * º 18 2.3257 0.1292 37.60 0.0001

METH * p * º 18 0.6410 0.0356 10.36 0.0001
METH * f * º 18 0.1612 0.0090 2.61 0.0003
METH * ¢2 * º 36 0.1333 0.0037 1.08 0.3523
METH * d 18 0.0117 0.0006 0.19 0.9999

METH * p * d 18 0.0386 0.0021 0.62 0.8819
METH * f * d 18 0.0181 0.0010 0.29 0.9983
METH * ¢2 * d 36 0.0285 0.0008 0.23 1.0000
METH * º * d 18 0.0398 0.0022 0.64 0.8660

ERROR 1486 1.6699 0.0034
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Table 2: The F -ratiosa and their p-valuesb of the e®ects of the experimental
factors on each estimator (cases with p-values > 0.0500 are omitted).

METH p f p x f ¢2 º p x º
OS 21.310a 39.840 10.350

0.0001b 0.0001 0.0034

M 30.82 21.37
0.0001 0.0001

NS 13.570 51.710 14.170 56.950 15.690
0.0010 0.0001 0.0001 0.0001 0.0005

R 6.38 109.52 18.87 48.42 10.72
0.0177 0.0001 0.0001 0.0001 0.0029

U 8.18 56.75 21.82 5.25
0.0081 0.0001 0.0001 0.0300

¹U 11.00 54.76 5.73 4.11 13.98
0.0026 0.0001 0.0239 0.0277 0.0009

JK 6.18 56.87 29.39 4.29
0.0194 0.0001 0.0001 0.0480

ISE 23.29 36.51 7.35
0.0001 0.0001 0.0115

IME 23.82 38.41 7.70
0.0001 0.0001 0.0099

ISC 24.12 37.76 7.45
0.0001 0.0001 0.0110

IMC 24.17 39.24 7.69
0.0001 0.0001 0.0099

ISB 23.62 38.73 7.45
0.0001 0.0001 0.0110

IMB 23.88 38.46 7.85
0.0001 0.0001 0.0093

FSE 22.62 36.01 7.40
0.0001 0.0001 0.0113

FME 23.48 38.16 7.73
0.0001 0.0001 0.0098

FSC 23.39 37.28 7.50
0.0001 0.0001 0.0108

FMC 23.80 39.02 7.75
0.0001 0.0001 0.0097

FSB 23.07 38.20 7.49
0.0001 0.0001 0.0108

FMB 23.56 38.13 7.85
0.0001 0.0001 0.0093
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Table 3: Meana of error rate and mean of SSEb for the main e®ects of
experimental factors p, f , ¢2 and º.

METH
p

5 10
f

small large
¢2

1:098 2:836 6:574
º

0:4 0:8

AC 0.255a 0.277 0.282 0.250 0.371 0.269 0.158 0.287 0.244

OS 0.230a 0.224 0.237 0.216 0.322 0.231 0.126 0.226 0.227
0.356b 0.422 0.507 0.271 0.420 0.425 0.322 0.550 0.228

M 0.247 0.254 0.269 0.232 0.322 0.231 0.126 0.250 0.251
0.417 0.345 0.513 0.249 0.386 0.419 0.339 0.491 0.271

NS 0.183 0.176 0.175 0.184 0.260 0.184 0.095 0.179 0.180
0.541 0.792 0.912 0.421 0.878 0.686 0.435 0.924 0.409

R 0.148 0.149 0.131 0.165 0.229 0.151 0.065 0.149 0.148
0.952 1.182 1.544 0.590 1.386 1.110 0.704 1.384 0.749

U 0.248 0.251 0.266 0.232 0.359 0.252 0.136 0.248 0.250
0.533 0.405 0.637 0.301 0.497 0.519 0.390 0.573 0.365

¹U 0.273 0.262 0.292 0.243 0.382 0.271 0.151 0.267 0.268
0.486 0.340 0.577 0.249 0.450 0.465 0.324 0.496 0.330

JK 0.241 0.248 0.259 0.230 0.354 0.247 0.132 0.244 0.245
0.525 0.412 0.641 0.297 0.500 0.514 0.392 0.592 0.345

ISE 0.230 0.231 0.239 0.222 0.328 0.235 0.129 0.231 0.230
0.377 0.393 0.505 0.265 0.408 0.425 0.322 0.535 0.235

IME 0.232 0.232 0.241 0.223 0.329 0.237 0.130 0.232 0.232
0.378 0.388 0.501 0.265 0.409 0.419 0.322 0.532 0.234

ISC 0.227 0.229 0.236 0.220 0.325 0.233 0.127 0.228 0.228
0.383 0.403 0.517 0.269 0.421 0.433 0.326 0.549 0.238

IMC 0.229 0.230 0.238 0.221 0.326 0.234 0.128 0.229 0.229
0.384 0.397 0.512 0.269 0.421 0.426 0.324 0.545 0.236

ISB 0.232 0.233 0.242 0.224 0.330 0.237 0.131 0.233 0.233
0.372 0.379 0.490 0.261 0.400 0.415 0.312 0.522 0.229

IMB 0.234 0.234 0.244 0.225 0.331 0.239 0.133 0.234 0.234
0.369 0.373 0.482 0.259 0.393 0.410 0.310 0.512 0.229

FSE 0.232 0.232 0.242 0.223 0.330 0.237 0.130 0.232 0.232
0.373 0.388 0.498 0.263 0.401 0.421 0.320 0.528 0.233

FME 0.233 0.233 0.243 0.223 0.330 0.238 0.131 0.233 0.233
0.376 0.385 0.497 0.265 0.405 0.417 0.321 0.529 0.233

FSC 0.229 0.230 0.238 0.221 0.326 0.234 0.128 0.230 0.229
0.379 0.398 0.509 0.268 0.413 0.428 0.324 0.541 0.236
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Table 3: Continued.

METH
p

5 10
f

small large
¢2

1:098 2:836 6:574
º

0:4 0:8

FMC 0.230 0.231 0.239 0.221 0.327 0.235 0.129 0.230 0.230
0.382 0.394 0.508 0.269 0.418 0.424 0.323 0.541 0.235

FSB 0.235 0.235 0.245 0.225 0.332 0.239 0.133 0.235 0.235
0.369 0.373 0.482 0.259 0.392 0.410 0.310 0.514 0.227

FMB 0.235 0.235 0.245 0.225 0.332 0.240 0.133 0.235 0.235
0.367 0.370 0.478 0.259 0.389 0.407 0.309 0.508 0.229

Note that the above results from the repeated measures analysis show the
e®ects of the Monte Carlo experimental factors when "averaged" over the
di®erent estimators. However, SAS was also subjected to perform individual
ANOVA's separately for each of the estimators, in order to highlight any
deviations from the average behaviour of our experimental factors. These
ANOVA's are summarized in Table 2. F -ratios associated with signi¯cant
level ¸ 0:05 have been omitted.
From Table 2 we can see that the experimental factors f and º are highly

important for all estimators with respect to the SSE 's; the e®ect due to
the interaction p x º is signi¯cant for all methods except M and ¹U ; factor p
is important only for NS, R, U, ¹U , and JK ; ¢2 has signi¯cant e®ect only
on NS, R, and ¹U ; and only ¹U is signi¯cantly a®ected by the interaction
between p and f .
We may conclude from the analysis so far, that the experimental factor

d has very little or no e®ect on the estimation of error rates, while p, f ,
¢2 and º signi¯cantly in°uence the behaviour of the error rate estimators.
Hence, further interpretation of the results will be restricted to the above
four factors. The means of error rate estimates and the means of criterion
SSE for the main e®ects of these four factors are presented in Table 3.
From Table 3, it is clear that the bootstrap 3.632 estimators (ISE, IME

etc.) do not estimate the true error rate in the neighborhood of the in-
terval (0.3, 0.4). It is also very prominent from this table that R and NS
are the worst estimators not only with large SSE 's but also are heavily
overoptimistic (about 90%). Hence, these two estimators have been omitted
from further analysis. We shall interpret the ¯ndings in two folds: among
bootstrap estimators only and over all estimators.
Table 3 also shows that the balanced bootstrap estimators have smaller

SSE 's than the other bootstrap methods for both cases of p = 5 and 10; the
mixture sampling based estimators FMB and IMB being the best. However,
OS estimator is better than the balanced bootstrap ones for p = 5, with
the smallest SSE and becomes the best for this case. The behaviour of this
estimator becomes worst when p = 10, and for this case the estimators that
outperform the bootstrap estimators are ¹U andM, ¹U with the smallest SSE.
As far as the in°uence of the sample size factor f on the estimators is

concerned, Table 3 shows that the average SSE from, large samples are much
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smaller than those from small sample cases for all estimators. For small f ,
FMB is the best (bootstrap and overall) estimator, while IMB and FSB are
not far behind. For large samples, M and ¹U are the overall best estimators
with the smallest SSE, while IMB, FSB, and FMB perform better than the
other bootstrap methods.
Now consider the behaviour of the estimation methods on the levels of

the distance (separation) factor ¢2. It is obvious from Table 3 that the SSE
's of all estimators for highly separated populations (with ¢2 = 6.574) are
much smaller than those for ¢2 = 2.836 and ¢2 = 1.098. Although the
SSE 's corresponding to ¢2 = 2.836 are consistently larger than those for
¢2 = 1.098, this di®erence is considerably small. This behaviour suggests
that SSE does not decrease monotonically with increasing distance between
populations. The balanced bootstrap estimators outperform all the other
estimators in all cases except when ¢2 = 1.098 for which the M estimator
has smallest SSE, though IMB and FSB are not so far behind. Among
these balanced bootstrap estimators the mixture sampling versions (IMB
and FMB) seem slightly better than the separate sampling ones (ISB and
FSB).
Finally, from Table 3 we can easily deduce that the SSE's for all methods

are much smaller when the variables are almost independent (º = 0.8) than
when the variables are highly interdependent (º = 0.4). This illustrates
the high signi¯cance of the di®erence between the levels of factor º in our
ANOVA's earlier. The estimator M closely followed by ¹U are the best for
the case º = 0.4, while FMB is the best choice among bootstrap estimators
followed by FSB and IMB. Although FSB yields the smallest SSE for º =
0.8, the di®erences between the SSE 's for the estimators OS, ISB, IMB,
and FMB are very small.
There are some interesting and peculiar behaviours to be noted from Ta-

ble 3. It is clear that almost always the cross validation based estimators U
and JK yield the largest SSE values, hence are the worst estimators in the
sum-square-error sense for estimating the actual error rates. An interest-
ing behaviour that we may notice among the bootstrap estimators is that
the di®erence between ¯nite and in¯nite versions of the estimators due to
criterion SSE is negligible; while, although the di®erence between separate
and mixture sampling versions also small, estimators based on mixture sam-
pling procedure seem preferable. We also notice that Efron's estimators are
slightly superior to Chatterjee's methods.
The presentation of the signi¯cant interaction e®ects of the experimental

factors for all estimators is quite cumbersome. Hence, we chose only the
estimators, U, ¹U , OS,M, FME, FMC and FMB for this purpose. The choice
here was based on the fact that some of these estimators (eg. ¹U) outperform
the others in particular circumstances with main e®ects of factors, and the
others (eg. FMC ) are to represent special forms of estimators.
Since only 7 estimators are considered for further interpretation, the

choice of the interaction e®ects to be interpreted also restricted to those
interactions which have signi¯cant in°uence on these estimators. From the
F -ratios of the repeated measures ANOVA's for the SSE values, it was found
that the in°uence of the interactions METH x p x f and METH x p x º is
much higher than those of the other interactions. Thus we may choose to
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interpret only the e®ects of p x f and p x º on the 7 estimators considered.
However, the individual ANOVA's suggests that the signi¯cant in°uence of
p x f on theMETH factor may be due only to the ¹U estimator. We also may
argue that the interaction p x º has signi¯cant in°uence only on 5 of the 7
estimators, namely, the OS, U, FME, FMC and FMB estimators. Hence, it
would be appropriate to interpret the e®ect of p x f only on the ¹U estimator,
while the in°uence of p x º should be examined only on the estimators OS,
U, FME, FMC and FMB.
Result of the analysis shows that the ¹U estimator has smaller SSE means

when the sample sizes are large for both small and large number of variables
in the data. This estimator also has smaller SSE means when p = 10 than
when p = 5, for both levels of the sample sizes. These di®erences are larger
for the cases with small samples than those with large samples. As far as the
e®ect of interaction between the number of variables and interdependency of
variables is concerned, result of the analysis shows that all the 5 estimators
have smaller SSE means when the variables are independent than when
they are interdependent, for both levels of p. These di®erences are greater
when p = 10 than when p = 5. All the 5 estimators uniformly have the
smallest SSE 's when the data consist of 10 independent variables, hence
this combination becomes the best. We may conclude the large number of
independent variables seem to reduce the SSE of the error rate estimators
dramatically.

7. Conclusion

Based on the results of the comparative study under the ideal conditions of
multivariate normality with equal covariance matrix, we may deduce some
important points as follows. The balanced bootstrap estimators outper-
form their counter parts and become the best for all situations. The Finite
Separate Balanced (FSB) estimator has the smallest SSE for independent
variables. For all the other situations, the Finite Mixture Balanced (FMB)
estimator is the best.
If we compare all estimators together, the FMB estimator is the best

with smaller SSE values for small samples cases, or cases with medium
and well separated populations. It is also becomes the overall best choice
with minimum SSE. The overall situation refers to the behaviour averaged
over all 48 Monte Carlo situations explained in section 3. The behaviour
of the In¯nite Mixture Balanced (IMB) and the Finite Separate Balanced
(FSB) estimators are not far behind that of FMB. For the other situations,
the best estimators are OS and ¹U for small and large number of variables
respectively, with the smallest SSE, while M and ¹U are the best for large
samples, M for close populations or interdependent variables, and FSB for
independent variables.
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