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Abstract. We construct and investigate consistent kernel-type
estimators for the first and second derivatives of a periodic Pois-
son intensity function when the period is known. We do not assume
any particular parametric form for the intensity function. More-
over, we consider the situation when only a single realization of the
Poisson process is available, and only observed in a bounded inter-
val. We prove that the proposed estimators are consistent when
the length of the interval goes to infinity. We also prove that the
mean-squared error of the estimators converge to zero when the
length of the interval goes to infinity.
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1. Introduction

We consider kernel type estimations for the first and second deriva-
tives of the intensity function of a periodic Poisson process. Let N be
a Poisson process on [0,∞) with (unknown) locally integrable inten-
sity function λ. We assume that λ is a periodic function with (known)
period τ . We do not assume any parametric form of λ, except that it
is periodic. That is, for each point s ∈ [0,∞) and all k ∈ Z, with Z

denotes the set of integers, we have

λ(s+ kτ) = λ(s). (1.1)

Suppose that, for some ω ∈ Ω, a single realization N(ω) of the Pois-
son process N defined on a probability space (Ω,F ,P) with intensity
function λ is observed, though only within a bounded interval [0, n].
Our goal in this paper is to study consistency of estimators for the
first and second derivatives of the intensity function λ at a given point
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s ∈ [0,∞) using only a single realization N(ω) of the Poisson process
N observed in interval [0, n]. A special case study using uniform kernel
estimators can be found in [4].
Throughout this paper, we assume that s is a Lebesgue point of λ,

that is we have

lim
h↓0

1

2h

∫ h

−h

|λ(s+ x)− λ(s)|dx = 0 (1.2)

(eg. see [7], p.107-108).
Since λ is a periodic function with period τ , the problem of estima-

ting λ, λ′ (the first derivative of λ) and λ′′ (the second derivative of λ)
at a given point s ∈ [0,∞) can be reduced into a problem of estima-
ting λ, λ′ and λ′′ at a given point s ∈ [0, τ). Hence, for the rest of this
paper, we assume that s ∈ [0, τ).

2. The estimators and some results

To define estomators of λ′ and λ′′ we need an estimator of λ. There-
fore, before defining estomators of λ′ and λ′′, we first review the con-
struction of a kernel-type estimator of λ at a given point s, as given
in Helmers et al. [2], as follows. Let K : R → R be a real valued
function, called kernel, which satisfies the following conditions: (K1)
K is a probability density function, (K2) K is bounded, and (K3) K
has (closed) support [−1, 1]. Let also hn be a sequence of positive real
numbers converging to 0, that is,

hn ↓ 0, (2.1)

as n → ∞. Now, we may define the estimator of λ at a given point
s ∈ [0, τ) as follows

λ̂n,K(s) :=
τ

n

∞
∑

k=0

1

hn

∫ n

0

K

(

x− (s+ kτ)

hn

)

N(dx). (2.2)

This estimator is a special case of a more general kernel-type estimator
of the intensity of a periodic Poisson process, which includes the case
when the period τ has to be estimated (see Helmers et al. ([2], [3])).
By having the estimator of λ at a given point s ∈ [0, τ), following

the idea in Helmers and Mangku [1], we may define an estimator of λ′

at a given point s ∈ [0, τ) as follows

λ̂′
n,K(s) :=

λ̂n,K(s+ hn)− λ̂n,K(s− hn)

2hn

. (2.3)

Construction of this estimator is using the fact that, for small h we
have

λ′(s) ≈
λ(s+ h)− λ(s− h)

2h
.

Consistency of λ̂′
n,K(s) is given in the following theorem.
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Theorem 2.1. (Consistency of λ̂′
n,K(s))

Suppose that the intensity function λ is periodic and locally integrable,
and has finite first derivative λ′ at s. If the kernel K is symmetric
and satisfies conditions (K1), (K2), (K3), and hn satisfies assumptions
(2.1) and nh3

n → ∞, then

λ̂′
n,K(s)

p
→ λ′(s), (2.4)

as n → ∞. In other words, λ̂′
n,K(s) is a consistent estimator of λ′(s).

In addition, the mean-squared error (MSE) of λ̂′
n,K(s) converges to 0,

as n → ∞.

Next we consider estimation of the second derivative λ′′ of λ at a
given point s ∈ [0, τ). Following the idea in Helmers and Mangku [1],
we may define an estimator of λ′′ at a given point s ∈ [0, τ) as follows

λ̂′′
n,K(s) :=

λ̂n,K(s+ 2hn) + λ̂n,K(s− 2hn)− 2λ̂n,K(s)

4h2
n

. (2.5)

Construction of this estimator is using the fact that, for small h we
have

λ′′(s) ≈
λ′(s+ h)− λ′(s− h)

2h
≈

λ(s+ 2h) + λ(s− 2h)− 2λ(s)

4h2
.

Consistency of λ̂′′
n,K(s) is given in the following theorem.

Theorem 2.2. (Consistency of λ̂′′
n,K(s))

Suppose that the intensity function λ is periodic and locally integrable,
and has finite second derivative λ′′ at s. If the kernel K is symmetric
and satisfies conditions (K1), (K2), (K3), and hn satisfies assumptions
(2.1) and nh5

n → ∞, then

λ̂′′
n,K(s)

p
→ λ′′(s), (2.6)

as n → ∞. In other words, λ̂′′
n,K(s) is a consistent estimator of λ′′(s).

In addition, the MSE of λ̂′′
n,K(s) converges to 0, as n → ∞.

3. Some Technical Lemmas

To prove Theorems 2.1 and 2.2 we need the following two lemmas.
The first lemma is about asymptotic approximations to Eλ̂n,K(s) in two
cases, namely (i) when λ has finite first derivative at s, (ii) when λ has
finite second derivative at s. The second lemma is about asymptotic
approximation to the variance of λ̂n,K(s). We will use the first lemma to

prove that the bias of λ̂′
n,K(s) and λ̂′′

n,K(s) converge to zero as n → ∞.
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The second lemma will be used to prove that the variances of λ̂′
n,K(s)

and λ̂′′
n,K(s) converge to zero as n → ∞.

Lemma 3.1. (Asymptotic approximations to the bias of λ̂n,K(s))

Suppose that the intensity function λ is periodic and locally integrable,
the kernel K is symmetric and satisfies conditions (K1), (K2), (K3),
and hn satisfies assumptions (2.1).

(i) If nhn → ∞ and λ has finite first derivative at s then

Eλ̂n,K(s) = λ(s) + o(hn), (3.1)

as n → ∞.
(ii) If nh2

n → ∞ and λ has finite second derivative at s then

Eλ̂n,K(s) = λ(s) +
1

2
λ′′(s)h2

n

∫

1

−1

x2K(x)dx+ o(h2

n), (3.2)

as n → ∞.

Proof: Here we only give the proof of part (i) of this lemma (see also
[6]). Proof of part (ii) of this lemma can be found in [5]. To prove
(3.1), first note that

Eλ̂n,K(s) =
τ

n

∞
∑

k=0

1

hn

∫ n

0

K

(

x− (s+ kτ)

hn

)

EN(dx)

=
τ

n

∞
∑

k=0

1

hn

∫ n

0

K

(

x− (s+ kτ)

hn

)

λ(x)dx

=
τ

n

∞
∑

k=0

1

hn

∫

R

K

(

x− (s+ kτ)

hn

)

λ(x)I(x ∈ [0, n])dx.

(3.3)

By a change of variable and using (1.1), we can write the r.h.s. of (3.3)
as

τ

n

∞
∑

k=0

1

hn

∫

R

K

(

x

hn

)

λ(x+ s+ kτ)I(x+ s+ kτ ∈ [0, n])dx

=
τ

n

∞
∑

k=0

1

hn

∫

R

K

(

x

hn

)

λ(x+ s)I(x+ s+ kτ ∈ [0, n])dx

=
τ

nhn

∫

R

K

(

x

hn

)

λ(x+ s)
∞
∑

k=0

I(x+ s+ kτ ∈ [0, n])dx. (3.4)

Now note that
∞
∑

k=0

I(x+ s+ kτ ∈ [0, n]) ∈
[n

τ
− 1,

n

τ
− 1

]

. (3.5)
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Then, the r.h.s. of (3.4) can be written as

τ

n hn

∫

R

K

(

x

hn

)

λ(x+ s)
(n

τ
+O(1)

)

dx

=
1

hn

∫

R

K

(

x

hn

)

λ(x+ s)dx+O

(

1

n

)

=

∫

1

−1

K(x)λ(s+ xhn)dx+O

(

1

n

)

, (3.6)

as n → ∞. By the Young’s form of Taylor’s theorem, we have

λ(s+ xhn) = λ(s) +
λ′(s)

1!
xhn + o(hn), (3.7)

jika n → ∞. Substituting (3.7) into the r.h.s. of (3.6), we obtain

Eλ̂n,K(s) =

∫

1

−1

K(x)

(

λ(s) +
λ′(s)

1!
xhn

)

dx+ o(hn) +O

(

1

n

)

= λ(s)

∫

1

−1

K(x)dx+ λ′(s)hn

∫

1

−1

xK(x)dx+ o(hn)

+O

(

1

n

)

, (3.8)

as n → ∞. By assumption (K1) and (K3) we have
∫

1

−1
K(x)dx = 1.

Since the kernel K is symmetric, an easy calculation shows that the
second term on the r.h.s. of (3.8) is equal to zero. By the assumption
nhn → ∞, we have the last term on the r.h.s. of (3.8) is of order o(hn),
as n → ∞. Hence we obtain (3.1). This completes the proof of part
(i) of Lemma 3.1.

Lemma 3.2. (Asymptotic approximation to the variance of λ̂n,K(s))

Suppose that the intensity function λ is periodic and locally integrable.
If the kernel K satisfies conditions (K1), (K2), (K3), and hn satisfies
assumptions (2.1), then

V ar
(

λ̂n,K(s)
)

=
τλ(s)

nhn

∫

1

−1

K2(x)dx+ o

(

1

nhn

)

(3.9)

as n → ∞, provided s is a Lebesgue point of λ.

Proof: We refer to [5] for the proof of this lemma.

4. Proof of Theorem 2.1

To prove Theorem 2.1 it suffices to check the following two lemmas.

Lemma 4.1. (Asymptotic unbiasedness of λ̂′
n,K(s))

Suppose that the intensity function λ is periodic, locally integrable and
has finite first derivative at s. If the kernel K is symmetric and satisfies
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conditions (K1), (K2), (K3), the bandwidth hn satisfies assumptions
(2.1) and nhn → ∞, then

Eλ̂′
n,K(s) → λ′(s), (4.1)

as n → ∞. In other words, λ̂′
n,K(s) is asymptotically unbiased estima-

tor of λ′(s).

Proof: By (2.3), Eλ̂′
n,K(s) can be computed as follows

Eλ̂′
n,K(s) =

1

2hn

(

Eλ̂n,K(s+ hn)− Eλ̂n,K(s− hn)
)

. (4.2)

By (3.1) and Taylor expansion we have

Eλ̂n,K(s+ hn) = λ(s+ hn) + o(hn) = λ(s) +
λ′(s)

1!
hn + o(hn) (4.3)

and

Eλ̂n,K(s− hn) = λ(s− hn) + o(hn) = λ(s)−
λ′(s)

1!
hn + o(hn) (4.4)

as n → ∞. Substituting (4.3) and (4.4) into the r.h.s. of (4.2), then
we obtain

Eλ̂′
n,K(s) = λ′(s) + o(1)

as n → ∞, which is equivalent to (4.1). This completes the proof of
Lemma 4.1.

Lemma 4.2. (Convergency of the variance of λ̂′
n,K(s))

Suppose that the intensity function λ is periodic and locally integrable.
If the kernel K satisfies conditions (K1), (K2), (K3), and hn satisfies
assumptions (2.1) and nh3

n → ∞, then

V ar
(

λ̂′
n,K(s)

)

→ 0, (4.5)

as n → ∞, provided s is a Lebesgue point of λ.

Proof: By (2.3), V ar(λ̂′
n,K(s)) can be computed as follows

V ar
(

λ̂′
n,K(s)

)

=
1

4h2
n

(

V ar(λ̂n,K(s+ hn)) + V ar(λ̂n,K(s− hn))

−2Cov(λ̂n,K(s+ hn), λ̂n,K(s− hn))
)

. (4.6)

By (2.1), for sufficiently large n, we have that for each integer k, the
interval [s + kτ, s + kτ + 2hn] and [s + kτ − 2hn, s + kτ ] are disjoint.

This means that λ̂n,K(s+hn) and λ̂n,K(s−hn) are independent, which

implies Cov(λ̂n,K(s+ hn), λ̂n,K(s− hn)) = 0. Then (4.6) reduces to

V ar
(

λ̂′
n,K(s)

)

=
1

4h2
n

(

V ar(λ̂n,K(s+ hn)) + V ar(λ̂n,K(s− hn))
)

.(4.7)
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By (3.9) we obtain that

V ar
(

λ̂′
n,K(s)

)

=
1

4h2
n

O

(

1

nhn

)

= O

(

1

nh3
n

)

,

as n → ∞. By the assumption nh3

n → ∞, we obtain (4.5). This
completes the proof of Lemma 4.2.

5. Proof of Theorem 2.2

To prove Theorem 2.2 it suffices to check the following two lemmas.

Lemma 5.1. (Asymptotic unbiasedness of λ̂′′
n,K(s))

Suppose that the intensity function λ is periodic, locally integrable and
has finite second derivative at s. If the kernel K is symmetric and sa-
tisfies conditions (K1), (K2), (K3), the bandwidth hn satisfies assump-
tions (2.1) and nh2

n → ∞, then

Eλ̂′′
n,K(s) → λ′′(s), (5.1)

as n → ∞. In other words, λ̂′′
n,K(s) is asymptotically unbiased estima-

tor of λ′′(s).

Proof: By (2.5), Eλ̂′′
n,K(s) can be computed as follows

Eλ̂′′
n,K(s) =

1

4h2
n

(

Eλ̂n,K(s+ 2hn) + Eλ̂n,K(s− 2hn)− 2Eλ̂n,K(s)
)

.(5.2)

By (3.2) we have

Eλ̂n,K(s+ 2hn) = λ(s+ 2hn) +
1

2
λ′′(s+ 2hn)h

2

n

∫

1

−1

x2K(x)dx

+o(h2

n), (5.3)

and

Eλ̂n,K(s− 2hn) = λ(s− 2hn) +
1

2
λ′′(s− 2hn)h

2

n

∫

1

−1

x2K(x)dx

+o(h2

n), (5.4)

as n → ∞. By Taylor expansion we obtain

λ(s+ 2hn) = λ(s) +
λ′(s)

1!
2hn +

λ′′(s)

2!
4h2

n + o(h2

n), (5.5)

λ(s− 2hn) = λ(s)−
λ′(s)

1!
2hn +

λ′′(s)

2!
4h2

n + o(h2

n), (5.6)

λ′′(s+ 2hn) = λ′′(s) + o(1), (5.7)

λ′′(s− 2hn) = λ′′(s) + o(1), (5.8)
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as n → ∞. Substituting (5.5) and (5.7) into the r.h.s. of (5.3), we
obtain

Eλ̂n,K(s+ 2hn) = λ(s) +
λ′(s)

1!
2hn +

λ′′(s)

2!
4h2

n

+
1

2
λ′′(s)h2

n

∫

1

−1

x2K(x)dx+ o(h2

n), (5.9)

as n → ∞. Substituting (5.6) and (5.8) into the r.h.s. of (5.4), we
obtain

Eλ̂n,K(s− 2hn) = λ(s)−
λ′(s)

1!
2hn +

λ′′(s)

2!
4h2

n

+
1

2
λ′′(s)h2

n

∫

1

−1

x2K(x)dx+ o(h2

n), (5.10)

as n → ∞. Finally, by substituting (3.2), (5.9) and (5.10) into the
r.h.s. of (5.2), we obtain

Eλ̂′′
n,K(s) = λ′′(s) + o(1)

as n → ∞, which is equivalent to (5.1). This completes the proof of
Lemma 5.1.

Lemma 5.2. (Convergency of the variance of λ̂′′
n,K(s))

Suppose that the intensity function λ is periodic and locally integrable.
If the kernel K satisfies conditions (K1), (K2), (K3), and hn satisfies
assumptions (2.1) and nh5

n → ∞, then

V ar
(

λ̂′′
n,K(s)

)

→ 0, (5.11)

as n → ∞, provided s is a Lebesgue point of λ.

Proof: By a simple argument, see proof of Lemma 4.2, for sufficiently
large n we have that λ̂n,K(s + 2hn), λ̂n,K(s − 2hn) and λ̂n,K(s) are

independent. Then, by (2.5), V ar(λ̂′′
n,K(s)) can be computed as follows

V ar
(

λ̂′′
n,K(s)

)

=
1

16h4
n

(

V ar(λ̂n,K(s+ 2hn)) + V ar(λ̂n,K(s− 2hn))

+4V ar(λ̂n,K(s))
)

. (5.12)

By (3.9) we obtain that

V ar
(

λ̂′′
n,K(s)

)

=
1

16h4
n

O

(

1

nhn

)

= O

(

1

nh5
n

)

,

as n → ∞. By the assumption nh5

n → ∞, we obtain (5.11). This
completes the proof of Lemma 5.2.
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