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form better than the existing estimators. These estimators can be
computed by means of separate or mixture resampling methodol-
ogy. We consider both of them.

Key words: Discriminant analysis, classification rule, probability of
misclassification, actual error rate, balanced bootstrap estimator.

1. Introduction

The major problem in estimating the error rate in discriminant ana-
lysis arises when there are no data available beyond those used to
define and estimate the classification rule. The resubstitution method
has been reported optimistically biased because of using the same data
to construct as well as to evaluate the classification rule.
One other alternative is using parametric estimators. When the pa-

rent populations are multivariate normal, on average, the OS, L, and
M estimators are the best for estimating the actual error rate. How-
ever, the performance of these estimators deteriorate when the parent
populations are not normal. So, when the normality assumption is
questioned, we still need a better estimator.
Another alternative is using the empirical estimators such as the ones

based on cross-validation, jackknife, and bootstrap. The best estima-
tors among these empirical techniques (see Efron (1983), Snapinn and
Knoke (1985), Ganeshanandam and Krzanowski (1990) and Mangku
(1992)) are the U , Ū , JK, and 0.632 estimators. These U , Ū , and JK
estimators are basically based on the leave-one-out technique. Since
this procedure holds out one observation at a time, in turn, until each
observation has been held once, the maximum number of pseudo data
created here is the same as the original sample size. Because of this

11



12 I WAYAN MANGKU

fact, the performance of these estimators deteriorate when the sample
sizes become small. In other words, when the sample sizes are small,
we still need a better estimator.
In the case of small samples, we expect the bootstrap based tech-

nique (0.632 estimator) to behave better, since the number of pseudo
data that can be generated here is almost independent of the sample
sizes. The number of bootstrap samples that can be re-sampled (with
replacement) from a sample of size n is nn . Here, we can notice that
the number of pseudo data sets, namely nn, is much larger than the
size of the original sample, n, even for small values of n. However, as
reported by Ganeshanandam and Krzanowski (1990), this 0.632 esti-
mator perform poorly when the two populations are not closer together.
So we still need a better error rate estimator, particularly when the

populations are not normal, when the populations are not closer to-
gether, and when the sample sizes are small.
In this paper we propose new error rate estimators based on balanced

bootstrap technique, which are expected to perform better than the
existing estimators. These estimators can be computed by means of
both separate and mixture resampling methodology. We shall consider
both of these cases. Before discussing the proposed estimators, the
basic idea of the balanced bootstrap technique is reviewed in section
2. Derivation and algorithm of the balanced bootstrap estimator using
separate bootstrap samplings are presented in section 3, while section
4 gives explanations of the balanced bootstrap estimator using mixture
bootstrap samplings. Some further discussions are given in section 5.

2. The Balanced Bootstrap Technique

Some improvements and modifications of the ordinary bootstrap
methodology have been reported in the literature. Efron (1983) in-
troduced randomized bootstrap and double bootstrap to correct the
bias of the ordinary bootstrap. The randomized bootstrap is a simple
modification of the ordinary bootstrap, appropriate when the data are
dichotomous. Suppose we have n observations x1, x2, . . . , xn, then we
put mass 1/n at each xi (i = 1, 2, . . . , n) as well as at each of the
complementary point (1 − xi) to construct the empirical probability

distribution F̂ . The bootstrapping procedure is then performed ac-
cording to this empirical probability distribution. While in the double
bootstrap, the procedure involve two layers of bootstrapping. Here,
the second layer of bootstrap sample is obtained by resampling the
first layer of bootstrap sample. This second layer of bootstrap sample
is then used to correct the bias of the ordinary bootstrap.
Later, some other modifications such as balanced resampling, im-

portance resampling, antithetic resampling, and nested resampling for
the bootstrap also have been introduced (see Davison, Hinkley, and
Schechtman (1986), Gleason (1988), Johns (1988), Hall (1989a,..., 1990),
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Hall et al. (1989), Hinkley and Shi (1989), Efron (1990), and Graham
et al. (1990)). The most popular and widely applicable modification
among these is due to the balanced resampling. This is a technique
where each sample observation occurs with the same frequency in all
of the bootstrap samples.
The bootstrap sample obtained from balanced resampling has com-

putational advantages over the ordinary one. Also, in the estimation
procedures the balanced bootstrap resampling reduces the simulation
error by controlling a linear approximation to the estimate of the pa-
rameter (Davison, Hinkley, and Schechtman (1986), Gleason (1988)).
Furthermore, Hall (1989a) showed that the balanced bootstrap algo-
rithm has mean squared error of (bn2)−1 which represents a significant
improvement over the ordinary one, which has mean squared error of
only (bn)−1. Here n is the sample size and b is the number of bootstrap
samples.
The need for balanced bootstrap simulation can be illustrated as

follows. Consider the simple case of bootstrapping the average

Ȳ =
1

n

n
∑

j=1

Yj

of random variables Y1, Y2, . . . , Yn. Let y1, y2, . . . , yn be the observed
values of Y1, Y2, . . . , Yn. Suppose that we estimate the bias and the
variance of Ȳ by ordinary bootstrap simulation; these estimates are
given respectively by

Bias∗ = ȳ∗(b) − ȳ (2.1)

and

s∗2(b) =
1

b− 1

b
∑

k=1

(

ȳ∗k − ȳ∗(b)
)2

. (2.2)

Here ȳ∗k’s (k = 1, 2, . . . , b) are the averages from the bootstrap sam-
ples and ȳ∗(b) is the average of these b values and ȳ is the average of
y1, y2, . . . , yn. Evidently the nonzero bias estimate ”Bias∗” will be
misleading because the true bias of Ȳ is zero. Removing this error
requires only that each datum yj (j = 1, 2, . . . , n) occurs equally often
in the aggregate of all b bootstrap samples. This simple balance also
has concomitant effect of slightly reducing the probable error in s∗2(b)
(Davison, Hinkley, and Schechtman, 1986).
The general procedure to perform balanced bootstrap resampling

can be summarized as follows. Suppose that we have a data set Y =
{y1, y2, . . . , yn} of size n, and we wish to generate b balanced bootstrap
samples. Theoretically, the procedure is

(a) Make b copies of each datum y1, y2, . . . , yn, so we will have a new
big data set of size bn.
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(b) Draw a random sample of size n from the new big data set without
replacement. This is the first balanced bootstrap sample.

(c) Repeat step (b) until we have b balanced bootstrap samples.

(Graham, et al., 1990).

3. Estimators based on separate samplings

This section explains the balanced bootstrap procedure for estima-
ting the misclassification error rate in discriminant analysis using se-
parate bootstrap samplings approach. Suppose we wish to generate
b balanced bootstrap samples, and the algorithm can be described as
follows:

(a) Let us first consider the generation of bootstrap samples from the
training set t1. Construct a list L of length bn1 (i.e. b times
n1) by concatenating l1, l2, . . . , lb, where each lk (k = 1, 2, . . . , b)
is a set of indices of the form {1, 2, . . . , n1}. Then, randomly
permute L to produce a new list L′, and successively divide L′

into b new sets of indices l′1, l
′

2, . . . , l
′

b each of size n1. Note here
that each of these l′k’s may contain more than one replication of
some numbers from {1, 2, . . . , n1}, hence leaving no representa-
tion of some other numbers of this set in them. The balanced
bootstrap samples are then given by t

∗

11, t
∗

12, . . . , t
∗

1b, where the
elements of t∗1k are the elements of t1 corresponding to the in-
dices of l′k (k = 1, 2, . . . , b). Repeat the above process with n1

and t1 replaced respectively by n2 and t2, to obtain the balanced
bootstrap samples t∗11, t

∗

12, . . . , t
∗

1b from training set t2.
(b) Based on the bootstrap training sets t

∗

k = {t∗1k, t
∗

2k}, construct
classification rules Wk(x, t

∗

k), for k = 1, 2, . . . , b.
(c) Classify the individuals in the original training sample t = {t1, t2}

which are not drawn into the k-th balanced bootstrap sample
t
∗

k = {t∗1k, t
∗

2k} using the k-th classification rule Wk(x, t
∗

k). Let βk

be the number of individuals in t = {t1, t2} which are not drawn
into t

∗

k = {t∗1k, t
∗

2k}. Let also αk be the number of individuals
in t = {t1, t2} which are not drawn into t

∗

k = {t∗1k, t
∗

2k} and are
misclassified by Wk(x, t

∗

k). Then compute

ξ =

(

b
∑

k=1

αk

)

/

(

b
∑

k=1

βk

)

.

The balanced bootstrap estimator using separate bootstrap sam-
plings is then given by

P̂ (SBB) = (1− Cs)P̂ (R) + Csξ, (3.1)

with SBB means Separate Balanced Bootstrap. Here, P̂ (R) is
the overall resubstitution error rate (see Smith (1947)), and Cs

represents the probability that the observation xij in the original
training sample t = {t1, t2} is selected into the balanced bootstrap
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sample t
∗

k = {t∗1k, t
∗

2k}, using separate resampling methodology
(for i = 1, 2; j = 1, 2, . . . , ni; and k = 1, 2, . . . , b).

The use of the coefficient Cs in equation (3.1) follows Efron’s (1983)
assumption about the distribution of the distance between the point
at which the classification rule is applied and the nearest point in the
training samples. Efron (1983) assumes that this probability distri-
bution is equal to the probability that the point at which the rule is
applied is included in the bootstrap samples. For the case of balanced
bootstrap with separate bootstrap samplings, the expression of this
probability can be derived as below.
Recall the procedure to resample t1 to obtain the balanced bootstrap

samples t
∗

1k, (k = 1, 2, . . . , b) as derived in step (a) above. From this
process, it is clear that the probability that an individual x1j in t1

is included in the balanced bootstrap sample t
∗

1k is the same as the
probability that an element z in l is selected into l′k, z being any number
from {1, 2, . . . , n1}. For a particular value of z, L′ will consists of b
duplicates of z and (bn1 − b) other numbers. Since we divide L′ into
b l′k’s (k = 1, 2, . . . , b), each of size n1, the probability that z is not
included in l′k, follows a hypergeometric model, and is given by

F (n1, b) =

(

b
0

)(

n1b− b
n1

)

(

n1b
n1

) , (3.2)

where
(

a
b

)

=
a!

b!(a− b)!
.

Hence, the probability that the individual x1j in t1 is not included
in the balanced bootstrap sample t

∗

1k is given by equation (3.2), for
any j = 1, 2, . . . , n1, and k = 1, 2, . . . , b. Using similar explanations
as above, we can deduce that the probability for any individual x2j

in t2 is not included in the balanced bootstrap sample t
∗

2k, for any
j = 1, 2, . . . , n2 and k = 1, 2, . . . , b, is given by

F (n2, b) =

(

b
0

)(

n2b− b
n2

)

(

n2b
n2

) . (3.3)

Note that, since t
∗

1k’s are resampled from t1 only, the probability
that the individual x2j in t2 is not included in the balanced bootstrap
sample t

∗

1k is equal to 1, for j = 1, 2, . . . , n2 and k = 1, 2, . . . , b. It is
also obvious that the probability that the individual x1j in t1 is not
included in the balanced bootstrap sample t∗2k is equal to 1, since t∗2k’s
are also resampled from t2 only, for j = 1, 2, . . . , n1 and k = 1, 2, . . . , b.
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Since t
∗

k = {t∗1k, t
∗

2k}, the probability for an individual x1j is not
included in the k-th balanced bootstrap sample t

∗

k (j = 1, 2, . . . , n1;
k = 1, 2, . . . , b) is given by

P
(

x1j 6∈ t
∗

k

)

= P
(

x1j 6∈ t
∗

1k

)

P
(

x1j 6∈ t
∗

2k

)

= F (n1, b) (1) = F (n1, b)

=

(

b
0

)(

n1b− b
n1

)

(

n1b
n1

) . (3.4)

Using the same argument we also find that the probability that the
individual x2j is not included in the k-th balanced bootstrap sample
t
∗

k (j = 1, 2, . . . , n2; k = 1, 2, . . . , b) is given by

P
(

x2j 6∈ t
∗

k

)

= P
(

x2j 6∈ t
∗

1k

)

P
(

x2j 6∈ t
∗

2k

)

= (1)F (n2, b) = F (n2, b)

=

(

b
0

)(

n2b− b
n2

)

(

n2b
n2

) . (3.5)

Since the entire set t = {t1, t2} is a mixture of n1 individuals be-
long to t1 and n2 individuals belong to t2, for any individual xij ∈ t

(i = 1, 2; j = 1, 2, . . . , ni), the probability that this individual is not
included in the k-th balanced bootstrap sample t∗k (k=1,2,...,b) is given
by

F̄ (n1, n2, b) =
n1

n1 + n2

F (n1, b) +
n2

n1 + n2

F (n2, b)

=
n1

n1 + n2

(

b
0

)(

n1b− b
n1

)

(

n1b
n1

) +
n2

n1 + n2

(

b
0

)(

n2b− b
n2

)

(

n2b
n2

) . (3.6)

Finally, we find the probability that any individual xij in t (i = 1, 2; j =
1, 2, . . . , n) is included in the k-th balanced bootstrap sample t

∗

k (k =
1, 2, . . . , b) as

θ (n1, n2, b) = 1− F̄ (n1, n2, b)

= 1−
n1

n1 + n2

(

b
0

)(

n1b− b
n1

)

(

n1b
n1

)

−
n2

n1 + n2

(

b
0

)(

n2b− b
n2

)

(

n2b
n2

) . (3.7)
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Having established the probability expression in (3.7), we can now de-
fine the finite version of the balanced bootstrap estimator using se-
parate bootstrap samplings (by replacing Cs in equation (3.1) with
θ(n1, n2, b) as,

P̂ (FSB) = (1− θ (n1, n2, b)) P̂ (R) + θ (n1, n2, b) ξ, (3.8)

with FSB means Finite Separate Balanced.
To define the infinite version of the balanced bootstrap estimator

with separate sampling procedure, we have to find the convergence
value of θ(n1, n2, b) in (3.7) for large values of n1, n2, and b. This is
given in the following theorem.

Lemma 3.1: For the function F (n, b) given in (3.2) or (3.3), we have

lim
n→∞,b→∞

F (n, b) = 0.368. (3.9)

Proof: By (3.2) or (3.3), we obtain

lim
n→∞

F (n, b)

= lim
n→∞

(

b
0

)(

nb− b
n

)

(

nb
n

) = lim
n→∞

(nb− b)!(nb− n)!

(nb)!(nb− n− b)!

= lim
n→∞

(nb− b)!(nb− n)(nb− n− 1) . . . (nb− n− b+ 1)(nb− n− b)!

(nb)(nb− 1) . . . (nb− b+ 1)(nb− b)!(nb− n− b)!

= lim
n→∞

(nb− n)(nb− n− 1) . . . (nb− n− b+ 1)

(nb)(nb− 1) . . . (nb− b+ 1)

= lim
n→∞

(

(nb− n)

(nb)

)(

(nb− n− 1)

(nb− 1)

)

. . .

(

(nb− n− b+ 1)

(nb− b+ 1)

)

= lim
n→∞

(

1−
1

b

)(

1−
n

(nb− 1)

)

. . .

(

1−
n

(nb− b+ 1)

)

= lim
n→∞

(

1−
1

b

)(

1−
1

b− 1/n

)

. . .

(

1−
1

b− (b− 1)/n

)

=

(

1−
1

b

)(

1−
1

b

)

. . .

(

1−
1

b

)

=

(

1−
1

b

)b

.

Note that

lim
b→∞

(

1 +
a

b

)b

= ea
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where e is the natural logarithm or e = 2.71828..... Hence, for the case
a = −1, we have

lim
b→∞

(

1−
1

b

)b

= e−1 = 0.368.

Using these results we find that,

lim
n→∞,b→∞

F (n, b) = lim
n→∞,b→∞

(

b
0

)(

nb− b
n

)

(

nb
n

) = 0.368. (3.10)

Theorem 3.2: For the function θ(n1, n2, b) in (3.7) we have

lim
n1→∞,n2→∞,b→∞

θ(n1, n2, b) = 0.632. (3.11)

Proof: Lemma 3.1 implies that,

lim
n1→∞,b→∞

F (n1, b) = 0.368 and lim
n2→∞,b→∞

F (n2, b) = 0.368.

Hence, for large values of n1, n2, and b, the equation (3.6) becomes

F̄ (n1, n2, b) =
n1

n1 + n2

0.368 +
n2

n1 + n2

0.368

=

(

n1

n1 + n2

+
n2

n1 + n2

)

0.368 = 0.368. (3.12)

Finally, for large values of n1, n2, and b, the value of function θ(n1, n2, b)
in equation (3.7) tends to (1 − 0.368) = 0.632. Hence, we may define
the infinite version of the balanced bootstrap estimator with separate
samplings (by replacing Cs in equation (3.1) with 0.632), as

P̂ (ISB) = 0.368P̂ (R) + 0.632ξ, (3.13)

with ISB means Infinite Separate Balanced.

4. Estimators based on mixture samplings

This section explains the procedure for estimating the error rate
using balanced bootstrap technique with mixture samplings methodol-
ogy. Suppose that we wish to generate b balanced bootstrap samples,
and the algorithm can be summarized as follows:

(a) Construct a list L of length bn by concatenating l1, l2, . . . , lb,
where each lk (k = 1, 2, . . . , b) is a set of indices from 1 to n,
with n = n1 + n2. Here each lk has the form

lk = {1, 2, . . . , n1, n1 + 1, n1 + 2, . . . , n},

where the first n1 indices correspond to each element of the first
training sample t1, and the remainder correspond to the elements
of the second training sample t2.

(b) Randomly permute L to produce a new list L′, and successively
divide L′ into b new sets of indices l′1, l

′

2, . . . , l
′

b each of size n.
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(c) The generated balanced bootstrap samples are t∗1, t
∗

2, . . . , t
∗

b , where
the elements of t∗k are the elements of t corresponding to the in-
dices of l′k (k = 1, 2, . . . , b). Let t∗k = {t∗1k, t

∗

2k}, where t
∗

1k and t
∗

2k

consist of n∗

1 and n∗

2 elements respectively from t1 and t2. Here n
∗

i

is not necessarily equal to ni, for i = 1, 2, but n∗

1+n∗

2 = n1+n2 = n.
(d) Based on the bootstrap training sets t∗k, construct the classifica-

tion rules Wk(x, t
∗

k), for k = 1, 2, . . . , b.
(e) Classify the individuals in the original training sample t = {t1, t2}

which are not drawn into the k-th balanced bootstrap sample
t
∗

k = {t∗1k, t
∗

2k} using the k-th classification rule Wk(x, t
∗

k). As
before, let βk be the number of individuals in t = {t1, t2} which
are not drawn into t

∗

k, αk be the number of individuals in t which
are not drawn into t

∗

k and are misclassified by Wk(x, t
∗

k), and

ξ =

(

b
∑

k=1

αk

)

/

(

b
∑

k=1

βk

)

.

Finally, the balanced bootstrap estimator of overall actual error
rate using mixture bootstrap samplings is given by

P̂ (MBB) = (1− Cm)P̂ (R) + Cmξ. (4.1)

Here, P̂ (R) is the overall resubstitution error rate (see Smith
(1947)), and Cm represents the probability that the observation
xij in the original training sample t is selected into the balanced
bootstrap sample t∗k obtained using mixture of bootstrapping (for
i = 1, 2; j = 1, 2, . . . , ni; and k = 1, 2, . . . , b).

The probability Cm for balanced bootstrap with mixture samplings,
can be formulated as follows. Recall the resampling procedure in step
(a) above. From this process, it is also obvious that the probability that
an individual xij in t is included in the balanced bootstrap sample t

∗

k

is the same as the probability that an element z in l is selected into l′k,
z being any number from {1, . . . , n}. For a particular value of z, L′

will consist of b duplicates of z and (bn − b) other numbers. Since L′

is divided into b of l′k’s (k = 1, 2, ..., b), each of size n, the probability
that z is not selected into l′, follows a hypergeometric model, and is
given by

F (n, b) =

(

b
0

)(

nb− b
n

)

(

nb
n

) =
(nb− b)!(nb− n)!

(nb)!(nb− n− b)!
. (4.2)

Hence, the probability that the individual xij in t is included in the
balanced bootstrap sample t

∗

k, which is the same as the probability of
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an element z in l being selected into l′, is given by

Ψ (n, b) = 1−

(

b
0

)(

nb− b
n

)

(

nb
n

) = 1−
(nb− b)!(nb− n)!

(nb)!(nb− n− b)!
. (4.3)

So, the finite version of the balanced bootstrap estimator using mixture
samplings can be defined (by replacing the coefficient Cm in equation
(4.1) with Ψ(n, b) in (4.3)) as

P̂ (FMB) = (1−Ψ(n, b)) P̂ (R) + Ψ(n, b)ξ. (4.4)

To define the infinite version of this estimator, once again we have
to find the convergence of the function Ψ(n, b) in (4.3) for large values
of n and b. Following the steps for obtaining the results in equation
(3.10), we find that

lim
n→∞,b→∞

Ψ(n, b) = lim
n→∞,b→∞

(1− F (n, b)) = 1− 0.368 = 0.632. (4.5)

Hence, the infinite version of the balanced bootstrap estimator using
mixture samplings can be defined (by replacing the coefficient Cm in
equation (4.1) with 0.632), as

P̂ (IMB) = 0.368P̂ (R) + 0.632ξ, (4.6)

with IMB means Infinite Mixture Balanced.

5. Discussion

In this paper we have defined four versions of balanced bootstrap
error rate estimators, namely FSB (Finite Separate Balanced), ISB
(Infinite Separate Balanced), FMB (Finite Mixture Balanced), and
IMB (Infinite Mixture Balanced). In practice, ISB and IMB seem
easier to be computed since both these estimators have fixed coefficient
0.632.
However, either for small sample cases or for cases with small number

of bootstrap samples, FSB or FMB seem to be more realistic estima-
tors. To avoid the computations of the coefficients θ(n1, n2, b) in equa-
tion (3.8) and Ψ(n, b) in equation (4.4), each time we use the estimators
FSB and FMB , the values of function

F (n, b) =

(

b
0

)(

nb− b
n

)

(

nb
n

)

for various values of n and b, were first obtained (see Table 1).
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Table 1. Values of function F (n, b) given by equation (4.2) for various
values of n and b.

Sample size (n)
Number of the bootstrap samples (b)

50 100 150 200 300 500 1000 2000−∞

10 0.345 0.347 0.347 0.348 0.348 0.348 0.349 0.349

15 0.352 0.353 0.354 0.354 0.355 0.355 0.355 0.355

20 0.355 0.357 0.357 0.358 0.358 0.358 0.358 0.358

30 0.358 0.360 0.360 0.361 0.361 0.361 0.361 0.362

40 0.360 0.361 0.362 0.362 0.363 0.363 0.363 0.363

50 0.360 0.362 0.363 0.363 0.363 0.363 0.363 0.363

60 0.361 0.363 0.364 0.364 0.364 0.364 0.364 0.365

70 0.362 0.363 0.364 0.364 0.365 0.365 0.365 0.365

80 0.362 0.364 0.364 0.365 0.365 0.365 0.365 0.366

90 0.362 0.364 0.365 0.365 0.365 0.365 0.366 0.366

100 0.362 0.364 0.365 0.365 0.365 0.366 0.366 0.366

150 0.363 0.365 0.365 0.366 0.366 0.366 0.366 0.367

200 0.363 0.365 0.366 0.366 0.366 0.367 0.367 0.367

300 0.364 0.365 0.366 0.366 0.367 0.367 0.367 0.367

500 0.364 0.366 0.366 0.367 0.367 0.367 0.367 0.368

1000 0.364 0.366 0.366 0.367 0.367 0.367 0.368 0.368

2000−∞ 0.364 0.366 0.367 0.367 0.367 0.368 0.368 0.368

Thus, for given values of n1, n2, n, and b, the coefficient

θ(n1, n2, b) = 1−

{

n1

n1 + n2

F (n1, b) +
n2

n1 + n2

F (n2, b)

}

and the coefficient Ψ(n, b) = 1− F (n, b), can be computed easily. For
example, suppose that the first and the second training samples are of
sizes n = 20 and n = 30, and the number of bootstrap samples is b =
100. For this case, the entire training sample is of size n = n1+n2 = 50.
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Then

θ(20, 30, 100) = 1−

(

20

50
F (20, 100) +

30

50
F (30, 100)

)

= 1− ((0.4)(0.357) + (0.6)(0.360))

= 0.641,

and Ψ(50, 100) = 1− F (50, 100) = 1− 0.362 = 0.638. For this case,

P̂ (FSB) = 0.359P̂ (R) + 0.641ξ

and

P̂ (FMB) = 0.362P̂ (R) + 0.638ξ.
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