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Abstract. This paper studies the regulation performance limi-
tation of delay-time systems. The performance is measured by
the energy of the control input with respect to an impulse dis-
turbance function. We first provide the analytical closed-form
expression of the optimal performance for minimum phase case
by reviewing the existing result. We then extend the problem to
non-minimum phase case by exploiting the results of linear time-
invariant discrete-time and delta domain cases.
Keywords: Performance limitation, regulation problem, delay-
time system.

1. Introduction

Problems concerning the fundamental performance limitation and
trade-off in feedback control systems have been intensively studied for
decades, beginning with the work of Bode on logarithmic sensitivity
integrals [5]. There are two main research directions in the area. First
direction lies in the extensions of the Bode’s integral theorem to assess
design constraints and performance limitations via logarithmic type in-
tegrals. Second direction focuses on the formulations of optimal control
problems to quantify and characterize the fundamental performance
limits in terms of plant properties.
This kind of researches relates to the plant/controller design inte-

gration, where the main attention is not to design a robust or optimal
controller but to design a plant which is easily controllable in practice.
The H2 energy regulation problem, whose objective is to mini-

mize the energy of the control input, has attained much attention
in the recent years. Its performance limitation achievable by lin-
ear time-invariant (LTI) feedback control has been intensively investi-
gated, which led to some complete results for single-input single-output
(SISO) and single-input multiple-output (SIMO) [2, 3, 4, 6, 10, 12].
These results then has been extended to multiple-input multiple-output
(MIMO) case [8]. The only paper which regards the existence of a time-
delay in the loop is [7].
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Figure 1. Unity feedback control system

The present paper reviews the results provided in [7] and then ex-
tends the problem to a non-minimum phase case by exploiting the
discrete-time and delta domain LTI results given in [3].
After briefly stating the problem formulation in Section 2, we provide

the main result for minimum phase case in Section 3. The extended
result to non-minimum phase case is presented in Section 4. Some
concluding statements are in Section 5.

2. Problem Formulation

2.1. Feedback Control Setup. We consider the unity feedback con-
trol system depicted in Fig. 1, where P is the SISO plant to be con-
trolled with delay in the input port and K is the stabilizing controller.
The plant P can be written as

P (s) = P0(s)e
−sτ , (1)

where τ ≥ 0 is a fixed time-delay, and P0(s) is a rational and strictly
proper transfer function. The signals u ∈ R, d ∈ R, and y ∈ R are
the control input, the impulse disturbance input, and the measurable
output, respectively.
The problems to be investigated in this paper is the standard H2

optimal energy regulation problems, in which we minimize the perfor-
mance index

E :=

∫ ∞

0

|u(t)|2 dt (2)

with respect to an impulse disturbance input d. The problems without
delay have been studied in [3, 10].
From Parseval’s identity [11] we can deduce that the best achievable

regulation performance by all stabilizing controller K in set K is given
by

E∗ = inf
K∈K

∥

∥

∥

∥

K(s)P (s)

1 +K(s)P (s)

∥

∥

∥

∥

2

2

. (3)

2.2. Coprime Factorization. The key instrument to derive the ana-
lytical closed-form expression of the optimal performance is a coprime
factorization of a plant with a time delay.
Suppose that the state space realization of P0(s) is given by

P0(s) =

(

A B
C 0

)

,
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or in other words, the state space representation of P0 is given by

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(4)

where x, u, y are state, input, and output variables, respectively, and
A,B,C are their corresponding matrices.
and let L be any constant matrix such that A − LC is Hurwitz

(stable). Introduce the transfer functions

N(s) := e−sτN0(s), (5)

M(s) :=
1

1 + C(sI − A)−1L
, (6)

where N0(s) = C(sI − A + LC)−1B. It is obvious that N(s),M(s) ∈
RH∞ since, by definition, their poles are the eigenvalues of A − LC,
which is Hurwitz.
By using the so-called Sherman-Morrison-Woodbury formula [9] on

the matrix (sI − A+ LC)−1 we can write

N0(s) =
C(sI − A)−1B

1 + C(sI − A)−1L
.

Hence,
N(s)

M(s)
= e−sτC(sI − A)−1B = P (s),

which shows that N(s) and M(s) are the coprime factors of P (s). Let
R be a stabilising state feedback matrix such that (A − BR) has the
same eigenvalues as (A − LC). Then, there exist transfer functions
X(s), Y (s) ∈ RH∞ defined by

X(s) := ReAτ (sI − A+ LC)−1L, (7)

Y (s) := 1 + eAτ (sI − A+ LC)−1Be−sτ +

R(I − e−(sI−A)τ )(sI − A)−1B, (8)

such that the Bezout identity

N(s)X(s) +M(s)Y (s) = 1 (9)

is satisfied. See [7] for the complete overview.
From the above coprime factorization, the set of all stabilizing con-

trollers K is characterized as

K :=

{

K(s) |K(s) :=
X(s) +M(s)Q(s)

Y (s)−N(s)Q(s)

}

, (10)

where Q ∈ RH∞ is a free parameter. Consequently, the optimal per-
formance (3) can be further written as

E∗ = inf
Q∈RH∞

‖1−MY +MNQ‖22. (11)
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3. Minimum Phase Case

In this part we assume that P0(s) has no zeros in the closed right half
of the complex plane C+. To facilitate our derivation, we introduce the
minimal state space realization of P0 as follows

P0(s) =

(

A B
C 0

)

=





A1 0 B1

0 A2 B2

C1 C2 0



 ,

where the spectrum of A1 consists of all the unstable poles of P0. We
introduce the state feedback matrix

F = BTP , (12)

where

P =

(

P1 0
0 0

)

and P1 is the unique symmetric and positive definite solution of the
Riccati equation

P1A1 + AT
1P1 = P1B1B

T
1 P1. (13)

Theorem 1. Suppose that the plant P given in (1) is minimum phase
and has unstable poles pk ∈ C+ (k = 1, . . . , np). Then,

E∗ = 2

np
∑

k=1

pk +

∫ τ

0

F eAtBBTeA
TtFT dt. (14)

Proof. We may write (11) as

E∗ = inf
Q∈RH∞

‖M−1 − Y +NQ‖22

= ‖M−1 − 1‖22 + inf
Q∈RH∞

‖1− Y +NQ‖22

= 2

np
∑

k=1

pk + inf
Q∈RH∞

‖esτ (1− Y ) +N0Q‖22.

Further we have

esτ (1− Y (s)) = −esτG1(s)−G2(s),

where

G1(s) := F (I − e−(sI−A)τ )(sI − A)−1B,

G2(s) := F eAτ (sI − A+ LC)−1B.

It can be shown that G1 ∈ H⊥
2 and G2 ∈ H2. Furthermore, since esτ is

inner and N0 is minimum phase, then

‖esτG1(s)‖
2
2 = ‖G1(s)‖

2
2,

inf
Q∈RH∞

‖ −G2(s) +N0Q‖22 = 0,
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by properly selecting a Q ∈ RH∞. The proof is completed by fact that

‖G1(s)‖
2
2 =

∫ τ

0

F eAtBBTeA
TtFT dt.

(See [7] for the details.) �

We provide two direct implication of Theorem 1 regarding the num-
ber of unstable poles.

Corollary 1. If P has only one unstable pole p, then

E∗ = 2pe2pτ .

Proof. For the case of P has a single unstable pole p, we have A1 = p
and B1 = 1. By solving (13) we obtain F = 2p. Hence,

E∗ = 2p+ 2p(e2pτ − 1) = 2pe2pτ .

It is proved. �

For a plant with more than one unstable poles it seems hard to obtain
a general closed-form expression for E∗. However, we can derive a tight
upper bound for it.

Corollary 2. If P has unstable poles pk ∈ C+ (k = 1, . . . , np), then

E∗ =

(

2

np
∑

k=1

pk

)

e2τ
∑np

k=1
pk −O(τ 2)

≤

(

2

np
∑

k=1

pk

)

e2τ
∑np

k=1
pk .

Proof. See [7]. �

Example 1. Suppose that the plant has two real distinct unstable poles
p1 and p2. Then,

E∗ = 2(p1 + p2)e
2(p1+p2)τγ,

where

γ =
(p1e

−p1τ − p2e
−p2τ )2 + p1p2(e

−p1τ − e−p2τ )2

(p1 − p2)2
.

Immediately we have limτ→0 γ = 1. Also it is not difficult to verify that
whenever p1 → p and p2 → p, i.e., the unstable poles close each other,
then

γ →
2p2τ 2 − 2pτ + 1

e2pτ
.

Fig. 2 depicts the term γ for different values of p1 and p2 in the interval
[0, 3] for τ = 1 and τ = 0.3. While Fig. 3 plots the O(τ 2)-term with
respect to the location of unstable poles. We can see from those two
figures that the conservativeness of the bound reduces as τ → 0.
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Figure 2. Plot of γ versus the location of unstable poles
p1 and p2 for τ = {1, 0.3}.
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Figure 3. Plot of O(τ 2)-term versus the location of un-
stable poles p1 and p2 for τ = {0.1, 0.05, 0.01}.

4. Non-minimum Phase Case

We begin this section by presenting some preliminary results regard-
ing the energy regulation problem of LTI discrete-time and delta do-
main systems, which are previously studied in [3].

Theorem 2. [3] Suppose that the discrete-time plant Pd(z) has un-
stable poles λk (k = 1, . . . , nλ) and non-minimum phase zeros ηi (i =
1, . . . , nη). Then, the minimal regulation energy E∗

d is given by

E∗
d = Edm + Edn, (15)
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where

Edm :=

nλ
∏

k=1

|λk|
2 − 1,

Edn :=

nη
∑

i,j=1

(|ηi|
2 − 1)(|ηj|

2 − 1)

b̄ibj(η̄iηj − 1)
β̄iβj

with

bi :=







1 ; nη = 1
∏

j 6=i

ηi − ηj
η̄jηi − 1

; nη ≥ 2

βi :=

nλ
∏

k=1

λ̄k −

nλ
∏

k=1

λ̄kηi − 1

ηi − λk

.

Corollary 3. Suppose that the plant Pd(z) has relative degree v, non-
minimum phase zeros ηi (i = 1, . . . , nη) and only one unstable pole λ.
Then,

E∗
d = λ2(v−1)(λ2 − 1)

[

nη
∏

i=1

ληi − 1

ηi − λ

]2

.

Proof. Let the plant P (z) has only one unstable pole λ. In addition, if
P (z) has relative degree 1 and one common non-minimum phase zero
η, then from the expressions in Theorem 2 we obtain

E∗
d = (λ2 − 1)

(

λη − 1

η − λ

)2

.

If P (z) has relative degree 2 and two common non-minimum phase
zeros η1, η2, then

E∗
d = λ2(λ2 − 1)

(

λη1 − 1

η1 − λ

λη2 − 1

η2 − λ

)2

.

Furthermore, if P (z) has relative degree 3 and three common non-
minimum phase zeros η1, η2, η3, then

E∗
d = λ4(λ2 − 1)

(

λη1 − 1

η1 − λ

λη2 − 1

η2 − λ

λη3 − 1

η3 − λ

)2

.

In general, if P (z) has relative degree v and common non-minimum
phase zeros ηi (i = 1, . . . , nη), then

E∗
d = λ2(v−1)(λ2 − 1)

[

nη
∏

i=1

ληi − 1

ηi − λ

]2

.

It is proved. �

The delta domain version for the case in Corollary 3 is given as
follows.
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Corollary 4. Suppose that the plant PT (δ) has relative degree v, non-
minimum phase zeros ζi (i = 1, . . . , nζ) and only one unstable pole ρ.
Then,

E∗
T = (Tρ+ 1)2(v−1)(Tρ2 + 2ρ)

[

nζ
∏

i=1

Tζiρ+ ζi + ρ

ζi − ρ

]2

.

Now we consider the delay-time plant (1) where

P0(s) :=
Pn(s)

s− p

with p ∈ C+ is the unstable pole of P and Pn is rational, stable, and
strictly proper transfer function which has non-minimum phase zeros
zi (i = 1, . . . , nz). In other words, we consider a non-minimum phase
delay-time plant which has only single unstable pole p:

P (s) =
Pn(s)

s− p
e−sτ . (16)

Under the zero-order hold operations of sampling time T , we then
obtain the corresponding delta domain plant of (16) as follows

PT (δ) =
PTn(δ)

(Tδ + 1)τ/T+1(δ − ρ)
, (17)

where ρ is the unstable pole of PT (δ) and PTn is stable and has non-
minimum phase zeros ζi (i = 1, . . . , nζ). Note that τ/T relative degrees
are contributed by the discretization of the delay part e−sτ , while 1
relative degree is from that of PTn(s). The optimal performance of
(17) is then can be obtained by application of Corollary 4.

Corollary 5. Suppose the corresponding delta domain of the plant
PT (δ) is given by (17). Then,

E∗
T = (Tρ+ 1)2τ/T (Tρ2 + 2ρ)

[

nζ
∏

i=1

Tζiρ+ ζi + ρ

ζi − ρ

]2

.

By facts that ρ = (epT − 1)/T and ζi = (eziT − 1)/T , then we
immediately have1

lim
T→0

E∗
T = 2p e2pτ

[

nz
∏

i=1

zi + p

zi − p

]2

.

Hence, by the continuity property we can derive the energy regula-
tion performance for delay-time system (16), as shown in the following
result.

1It can be shown that the limiting zeros do not give any effect when the sampling
time sufficiently small. See [1] for the definition of limiting zeros.
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Figure 4. Plot of E∗ versus the location of unstable
pole p for τ = {0.1, 0.2, 0.3}.

Proposition 1. Suppose the plant P (s) is given by (16). Then, the
optimal regulation performance is given by

E∗ = 2p e2pτ

[

nz
∏

i=1

zi + p

zi − p

]2

. (18)

Proposition 1, which extends Corollary 1, admits that unstable pole
and non-minimum phase zero which close each other generally worsen
the regulation performance. Furthermore, if zi = ∞ then E∗ = 2pe2pτ ,
which confirms Corollary 1. Additionally if τ = 0 and nz = 1, i.e.,
we consider an LTI case with single unstable pole p and non-minimum
phase zero z, then

E∗ = 2p

(

z + p

z − p

)2

,

which can be confirmed either by [10, Theorem 2] or [12, Proposition
3.1].

Example 2. We illustrate the result by picking one simple example,
where we consider the following delay-time plant:

P (s) =
s− 2

s− p
e−sτ , p > 0.

Fig. 4 plots the optimal regulation performance E∗, which is computed
by using (18), for different value of p in the interval (0, 4] and different
value of τ .

5. Conclusion

In the present paper we have studied the energy regulation problem
of delay-time systems. We have provided the analytical closed-form
expression of the optimal performance in terms of the plant properties.
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In general, time-delay gives its effects in exponential way as well as the
unstable pole of the plant. Whenever the plant is non-minimum phase,
the unstable pole and non-minimum phase zero which close each other
will deteriorate the regulation performance.

References

[1] K.J. Åström, P. Hagander, and J. Sternby, ”Zeros of sampled systems,” Auto-
matica, vol. 20, no. 1, pp. 31–38, Jan. 1984.

[2] T. Bakhtiar and S. Hara, ”H2 regulation performance limitations for
unstable/non-minimum phase SIMO systems.” In Proc. of the 34rd SICE Sym-
posium on Control Theory, Osaka, Japan, Oct.–Nov. 2005, pp. 489–492.

[3] T. Bakhtiar and S. Hara, ”H2 control performance limitations for SIMO
systems: a unified approach,” in Proc. 6th Asian Control Conference
(ASCC2006), Bali, Indonesia, July 2006, pp. 555–563.

[4] T. Bakhtiar and S. Hara, ”H2 regulation performance limits for SIMO feed-
back control systems.” In Proc. 7th International Symposium on Mathemati-
cal Theory of Networks and Systems (MTNS2006), Kyoto, Japan, July 2006,
pp. 1966–1973.

[5] H.W. Bode, Network Analysis and Feddback Amplifier Design, Princeton, NJ:
Van Nostrand, 1945.

[6] J.H. Braslavsky, R.H. Middleton, and J. Freudenberg, ”Feedback stabiliza-
tion over signal-to-noise ratio constrained channels,” in Proc. 2004 American
Control Conference, Boston, USA, June–July 2004, pp. 4903–4909.

[7] J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg, ”Effects of time delay
on feedback stabilization over signal-to-noise ratio constrained channels,” in
Proc. 16th IFAC World Congress, Prague, July 2005.

[8] J. Chen, S. Hara, and G. Chen, ”Best tracking and regulation performance
under control energy constraint,” IEEE Trans. Automat. Contr., vol. 48, no. 8,
pp. 1320–1336, Aug. 2003.

[9] G.H. Golub and C.F. Van Loan (1996). Matrix Computations, 3rd Edition.
The John Hopkins University Press.

[10] S. Hara and C. Kogure, ”Relationship between H2 control performance lim-
its and RHP pole/zero locations,” in Proc. SICE Annual Conference, Fukui,
Japan, Aug. 2003, pp. 1242–1246.

[11] L.W. Johnson and R.D. Riess (1982). Numerical Analysis, 2nd Edition. Read-
ing, Mass.: Addison-Wesley.

[12] R. Middleton, J.H. Braslavsky, and J. Freudenberg, ”Stabilization of non-
minimum phase plants over signal-to-noise ratio constrained channel,” in Proc.
5th Asian Control Conference, Melbourne, Australia, July 2004.

[13] R.H. Middleton and G.C. Goodwin (1990). Digital control and estimation: a
unified approach, Englewood Cliffs, N.J.: Prentice-Hall.


