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Abstract. This paper presents some properties of a stationary
hidden Markov model. The most important is the ergodicity of
the observed process which is essential for limit theorems.
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1. Introduction

According to [6], if the Markov chain of a hidden Markov model
is stationary, then the observed process is also stationary. As a sta-
tionary process, the observed process has several properties, the most
important is ergodicity . The ergodicity is essential for limit theo-
rems. Therefore, finding sufficient conditions for the ergodicity of the
observed process will be the focus of this paper.

We will begin with definition of a hidden Markov model and some
properties of a stationary hidden Markov model. Then in the last
section, we show sufficient conditions for the ergodicity of the observed
process of a hidden Markov model.

2. A Stationary Hidden Markov Model

Let {Xt : t ∈ N} be a finite state Markov chain defined on a pro-
bability space (Ω,F , P ). Suppose that {Xt} is not observed directly,
but rather there is an observation process {Yt : t ∈ N} defined on
(Ω,F , P ). Then consequently, the Markov chain is said to be hidden

in the observations. A pair of stochastic processes {(Xt, Yt) : t ∈ N}
is called a hidden Markov model. Precisely, according to [5], a hidden
Markov model is formally defined as follows.

Definition 2.1. A pair of discrete time stochastic processes {(Xt, Yt) :
t ∈ N} defined on a probability space (Ω,F , P ) and taking values in
a set S × Y , is said to be a hidden Markov model (HMM), if it
satisfies the following conditions.
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1. {Xt} is a finite state Markov chain.
2. Given {Xt}, {Yt} is a sequence of conditionally independent ran-

dom variables.
3. The conditional distribution of Yn depends on {Xt} only through

Xn.
4. The conditional distribution of Yt given Xt does not depend on t.

Assume that the Markov chain {Xt} is not observable. The cardi-
nality K of S, will be called the size of the hidden Markov model.

Let {(Xt, Yt)} be a hidden Markov model defined on a probability
space (Ω,F , P ), taking values on S × Y , where S = {1, . . . , K} and
Y = R.

Let Λ be the set of all realizations {(xt, yt)} of the hidden Markov
model {(Xt, Yt)}. Let BΛ be the Borel σ-field of Λ. For each t ∈ N ,
define mappings

X̃t : Λ −→ S,

by

X̃t(λ) = xt

and

Ỹt : Λ −→ Y ,

by

Ỹt(λ) = yt,

for λ = {(xt, yt)} ∈ Λ. For t ∈ N , X̃t, Ỹt are coordinate projections on

Λ. When later a probability measure is defined on BΛ, then X̃t, Ỹt will
be random variables.

Next lemma shows that there is a probability measure P̃ defined on
BΛ such that the hidden Markov model {(Xt, Yt)} is equivalent with

the pair of processes {(X̃t, Ỹt)}, that is, {(Xt, Yt)} and {(X̃t, Ỹt)} have
the same law.

Lemma 2.2. There exists a probability measure P̃ defined on BΛ such

that the pair of coordinate projections {(X̃t, Ỹt)} and the hidden Markov
model {(Xt, Yt)} are equivalent.

Proof :

The idea of the proof comes from [2], page 511.

The hidden Markov model {(Xt, Yt)} is defined on the probability space
(Ω,F , P ). For each ω ∈ Ω, let

Xt(ω) = xt, t ∈ N

Yt(ω) = yt, t ∈ N .
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For each k ∈ N and distinct t1, . . . , tk ∈ N , let νt1,... ,tk be the joint
distribution of Xt1 , . . . , Xtk ; Yt1 , . . . , Ytk ,

νt1,... ,tk(A × B) = P
{

(Xt1 , . . . , Xtk) ∈ A, (Yt1 , . . . , Ytk) ∈ B
}

, (2.1)

for A ∈ Sk and B ∈ Bk, where Sk and Bk are the Borel σ-field of S
k

and Yk respectively.

Define a mapping

ζ : Ω → Λ,

by the requirement

X̃t(ζ(ω)) = Xt(ω) = xt

Ỹt(ζ(ω)) = Yt(ω) = yt,

for ω ∈ Ω and t ∈ N . Clearly,

ζ−1

{
λ ∈ Λ :

(
X̃t1(λ),. . ., X̃tk(λ)

)
∈ A,

(
Ỹt1(λ),. . ., Ỹtk(λ)

)
∈ B

}

=
{

ω ∈ Ω :
(
X̃t1(ζ(ω)),. . ., X̃tk(ζ(ω))

)
∈ A,

(
Ỹt1(ζ(ω)),. . ., Ỹtk(ζ(ω))

)
∈ B

}

=
{

ω ∈ Ω :
(
Xt1(ω),. . ., Xtk(ω)

)
∈ A,

(
Yt1(ω),. . ., Ytk(ω)

)
∈ B

}

∈ F , (2.2)

if A ∈ Sk and B ∈ Bk. Thus ζ is measurable.

Define probability measure P̃ = Pζ−1 on BΛ, then from (2.1) and (2.2),

P̃
{

λ ∈ Λ :
(
X̃t1(λ),. . ., X̃tk(λ)

)
∈ A,

(
Ỹt1(λ),. . ., Ỹtk(λ)

)
∈ B

}

= Pζ−1P̃
{

λ ∈ Λ :
(
X̃t1(λ),. . ., X̃tk(λ)

)
∈ A,

(
Ỹt1(λ),. . ., Ỹtk(λ)

)
∈ B

}

= P
{

ω ∈ Ω :
(
Xt1(ω),. . ., Xtk(ω)

)
∈ A,

(
Yt1(ω),. . ., Ytk(ω)

)
∈ B

}

= νt1,...,tk(A × B). (2.3)

The equation (2.3) shows that {(X̃t, Ỹt)}, defined on (Λ,BΛ, P̃ ) also has

finite dimensional distribution νt1,... ,tk . Thus {(Xt, Yt)} and {(X̃t, Ỹt)}
are equivalent.

Remarks 2.3. By Lemma 2.2, from now on, the hidden Markov model
{(Xt, Yt)} may be considered as the pair of coordinate projection pro-

cesses {(X̃t, Ỹt)}, defined on (Λ,BΛ, P̃ ). For convenience, we will drop
the tilde.

Suppose that the Markov chain {Xt} is stationary, then from [6], the
hidden Markov model {(Xt, Yt)} is also stationary. We want to build
a past for the hidden Markov model {(Xt, Yt) : t ∈ N} without loosing
its stationarity. The problem is to find a pair of stochastic processes
{(X̄t, Ȳt) : t ∈ Z} such that {(Xt, Yt) : t ∈ N} and {(X̄t, Ȳt) : t ∈ N}
have the same law.



30 BERLIAN SETIAWATY

Lemma 2.4. There is a stationary process {(X̄t, Ȳt)} indexed by t ∈
Z, unique up to equivalence, such that {(Xt, Yt) : t ∈ N} and {(X̄t, Ȳt) :
t ∈ N} are equivalent processes.

Proof :

The proof follows from [1], page 21.

Let I = {t1, t2, . . . , tk} ∈ Z. For all r large enough, the integers Ir =
{r+ t1, r+ t2, . . . , r+ tk} ⊂ N and the joint law of {(Xt, Yt) : t ∈ Ir} is
independent of r, since {(Xt, Yt)} is stationary. Let ΠI be this law. The
family ΠI is consistent. Kolmogorov consistency theorem ([1], page 6)
grants the existence of the process {(X̄t, Ȳt)} indexed by Z, such that
for all I as above ΠI is the joint law of {(X̄t, Ȳt) : t ∈ I}. Clearly
{(Xt, Yt) : t ∈ N} and {(X̄t, Ȳt) : t ∈ N} are equivalent processes.

Remarks 2.5. Without loss of generality, by Lemma 2.4, now we have
the stationary hidden Markov model {(Xt, Yt) : t ∈ Z}, defined on
the probability space (Λ,BΛ, P ), where Λ is the set of realizations
λ = {(xt, yt)}, BΛ is the Borel σ-field of Λ and Xt, Yt are coordinate
projections defined on Λ.

3. The Ergodicity of the Observed Process

If z = {zt} is a real sequence, let Tz denote the shifted sequence
{zt+1}. T is called the shift operator. A set of A of real sequences is
called shift invariant, when Tz ∈ A if and only if z ∈ A. A stationary
process Z = {Zt} is said to be ergodic if

P (Z ∈ A) = 0 or 1,

whenever A is shift invariant.
From [7], page 33, a stationary and irreducible Markov chain is er-

godic. Based on this, Leroux [4] derived the ergodicity of the observed
process {Yt}.

Lemma 3.1 (Leroux [4]). If the Markov chain {Xt} is stationary and
irreducible, then the observed process {Yt} is stationary and ergodic.

Proof :

Let A be a shift invariant set of sequences y = {yt} of possible realiza-
tions of Y = {Yt}. It will be proved that

P (Y ∈ A) = 0 or 1.

By the approximation theorem ([2], page 167), there is a subsequence
{k′} and cylinder set Ak′ having form

Ak′ =
{

λ ∈ Λ :
(
Y−k′(λ), . . . , Yk′(λ)

)
∈ B2k′

}

=
{

λ ∈ Λ :
(
y−k′ , . . . , yk′

)
∈ B2k′

}
,
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where B2k′ ∈ B2k′ , that is the Borel σ-field of Y2k′

, such that ∀k ∈ N ,

P (Y ∈ A△Ak′) < 2−k. (3.1)

Since Y is stationary and A is invariant, then

P (Y ∈ A△Ak′) = P (T 2k′

Y ∈ A△Ak′)

= P (Y ∈ A△ T−2k′

Ak′)

= P (Y ∈ A△ Ãk′), (3.2)

where

Ãk′ = T−2k′

Ak′

=
{

λ ∈ Λ :
(
Yk′(λ), . . . , Y3k′(λ)

)
∈ B2k′

}

=
{

λ ∈ Λ :
(
yk′ , . . . , y3k′

)
∈ B2k′

}
.

Let

Ã =
⋂

k∈N

⋃

j≥k

Ãj′ ,

then

Ac
⋂

Ã = Ac
⋂

(
⋂

k≥1

⋃

j≥k

Ãj′

)

=
⋂

k≥1

⋃

j≥k

(
Ac

⋂
Ãj′

)

= lim sup
k′→∞

Ac
⋂

Ãk′

and

A
⋂

Ãc = A
⋂

(
⋂

k≥1

⋃

j≥k

Ãj′

)c

= A
⋂

(
⋃

k≥1

⋂

j≥k

Ãc
j′

)

=
⋃

k≥1

⋂

j≥k

(
A

⋂
Ãc

j′

)

= lim inf
k′→∞

A
⋂

Ãc
k′ .
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Hence,

A△ Ã =
(
A

⋂
Ãc

) ⋃ (
Ac

⋂
Ã

)

=
(
lim inf
k′→∞

A
⋂

Ãc
k′

)⋃ (
lim sup

k′→∞

Ac
⋂

Ãk′

)

⊂

(
lim sup

k′→∞

A
⋂

Ãc
k′

) ⋃ (
lim sup

k′→∞

Ac
⋂

Ãk′

)

= lim sup
k′→∞

((
A

⋂
Ãc

k′

) ⋃ (
Ac

⋂
Ãk′

))

= lim sup
k′→∞

(
A△ Ãk′

)
. (3.3)

From (3.1) and (3.2)
∑

k

P (Y ∈ A△ Ãk′) =
∑

k

P (Y ∈ A△Ak′)

≤
∑

k

2−k

= 1,

then by Borrel Cantelli’s Lemma,

0 ≤ P (Y ∈ A△ Ã) ≤ P (Y ∈ lim sup A△ Ãk′) = 0,

implying

P (A△ Ã) = 0. (3.4)

Since (3.4) holds, then to prove P (Y ∈ A) = 0 or 1, is equivalent
with showing that

P (Y ∈ Ã) = 0 or 1.

By definition, Ã =
⋂

k≥1

⋃
j≥k Ãj′ , so Ã is in the tail σ-field. Since

Yt are conditionally independent given a realization x = {xt} of the
underlying Markov chain X = {Xt}, then the zero-one law implies

P (Y ∈ Ã|x) = 0 or 1.

Let

B = {x : P (Y ∈ Ã|x) = 1},

so

P (Y ∈ Ã) = E
[
1

Y ∈ eA

]

= E
[
E[1

Y ∈ eA
|x]

]

= E
[
P (Y ∈ Ã|x)

]

= 0 + 1 · P (X ∈ B)

= P (X ∈ B). (3.5)
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But, B is invariant, as

P (Y ∈ Ã|x) = P (TY ∈ Ã|Tx)

= P (Y ∈ Ã|Tx).

Since the Markov chain {Xt} is stationary and irreducible, then {Xt}
is ergodic, implying

P (X ∈ B) = 0 or 1.

Hence, by (3.5),

P (Y ∈ Ã) = 0 or 1.
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