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Abstract. This paper is a survey study on estimation of the pro-
bability of misclassifications in two-groups discriminant analysis
using the linear discriminant function as the classification rule.
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discussed.
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1. Introduction

This paper is a survey study on estimation of the probability of
misclassifications in two-groups discriminant analysis when the Linear
Discriminant Function (LDF) is used as the classification rule.

One of the problems in two-groups discriminant analysis is as fol-
lows. Given the existence of two groups of individuals, we want to find
a classification rule for allocating new individuals (observations) into
one of the existing two groups. Corresponding to each classification
rule, there is a probability of misclassifications if we use that classifica-
tion rule to classify new individuals (observations) into one of the two
groups. The best classification rule is the one that leads to the smallest
probability of misclassifications, which also called error rates.

There are three types error rates that have been frequently consi-
dered for study, namely: (i) the optimum error rate, which describes
the performance of a classification rule based on known parameters, (ii)
the conditional error rate, which describes the performance of a classi-
fication rule based on parameters estimated by the statistics computed
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from the training samples, and (iii) the expected error rate, which des-
cribes the expected performance of a classification rule based on pa-
rameters estimated by a randomly chosen training sample.

In practice, the parameters are rarely known, and the expected (or
unconditional) error rates depend heavily on the distribution of the dis-
criminant function, which is very complicated (see for example, Wald
(1944), Anderson (1951), Okamoto (1963) and Hills (1966)). Conse-
quently most work associated with error rate have assumed that the
samples, which are used to construct the estimated classification rule,
are fixed. This leads to the exploration of the conditional error rate.

Here the word ’conditional’ refers to the conditioning of the training
samples from which the classification rule is constructed. We may also
think of this as the probability that the given classification rule would
incorrectly classify a future observation. It should also be noted that
the conditional error rate is the error rate that is important to an ex-
perimentor who has already determined the classification rule. This
conditional error rate is also referred to as the actual error rate or the
true error rate by many authors. Hence, in this paper we concentrate
only on the actual error rate and its estimation.

2. Classification rule

Now we defined the classification rule which is used in the cur-
rent study. Recall that we restrict our study to discriminant analy-
sis problems involving only two groups or populations. These groups
are denoted by Π1 and Π2. Suppose X = (X1, X2, . . . , Xp)

T is a p-
dimensional vector of random variables associated with any individual.
We assume that X has different probability distributions in Π1 and Π2.
Let x be the observed value of X (for an arbitrary individual), f1(x) be
the probability density of X in Π1, and f2(x) be the probability den-
sity of X in Π2. Then the simplest intuitive classification decision is:
classify x into Π1 if it has greater probability of coming from Π1, that
is if f1(x)/f2(x) > 1; or classify x into Π2 if it has greater probability
of coming from Π2, that is if f1(x)/f2(x) < 1; or classify x arbitrarily
into Π1 or Π2 if these probabilities are equal or if f1(x)/f2(x) = 1.

In real situations it is reasonable to consider some important factors
such as prior probabilities of observing individuals from the two popu-
lations and the cost due to misclassifications. However, in this paper,
we only consider the case with equal prior probabilities and equal cost
due to misclassifications.

A variety of classification rules has been established in the literature.
The earliest and most well-known rule is Fisher’s (1936) Linear Discri-
minant Function (LDF). Let µ

i
= (µi1, µi2, . . . , µip)

T , be the means and

Σi be the covariance matrices of X in Πi (i = 1, 2). It is often assumed
that Σ1 = Σ2 = Σ. Let x̄1, x̄2,S1,S2, and S be the sample estimates
of µ

1
, µ

2
, Σ1, Σ2 and Σ respectively, using independent random samples
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of size n1 and n2 from Π1 and Π2. Denote these random samples (also
called training samples) by t1 and t2 respectively, and let t = {t1, t2}
be the entire set of training data of n = n1 + n2 observations. Also let
Np(µ, Σ) denotes the p-variate normal distribution with mean µ and
covariance matrix Σ. The estimated Fisher’s LDF is then given by

L(x) = x
T
S
−1(x̄1 − x̄2). (2.1)

This LDF was adopted later by Anderson (1951) to obtain a classifica-
tion statistics W (x), given by

W (x) = W (x, t) =

(

x −
1

2
(x̄1 + x̄2)

)T

S
−1 (x̄1 − x̄2) . (2.2)

Using this rule, a new individual x will be allocated into Π1 if W (x) ≥
0, otherwise into Π2. In this paper we consider (2.2) as our classifica-
tion rule, and sometime we will use the notation W (x, t), to give an
emphasize that this classification rule is constructed using the training
sample t, to classify the new individual x.

3. The probability of misclassifications

In this paper, what we mean by the probability of misclassifications
is the actual error rates of the linear discriminant function W (x, t).
The actual error rates are given by

P1 = P(W (x, t) < 0 when x is from Π1|t fixed),

P2 = P(W (x, t) ≥ 0 when x is from Π2|t fixed). (3.1)

Here, P1 represents the probability of classifying the new individual x in
to Π2 when it is actually belong to Pi1 and P2 represents the probability
of classifying the new individual x in to Π1 when it is actually belong
to Pi2. The overall actual error rate is then defined by

AC =
n1

n1 + n2
P1 +

n2

n1 + n2
P2. (3.2)

Under the assumptions that X ∼ Np(µ1
, Σ) on population Π1 and

X ∼ Np(µ2
, Σ) on population Π2, it can easily be shown that

P1 = Φ







−
(

µ
1
− 1

2(x̄1 + x̄2)
)T

S
−1(x̄1 − x̄2)

((x̄1 − x̄2)
TS−1ΣS−1(x̄1 − x̄2))

1/2






(3.3)

and

P2 = Φ







(

µ
2
− 1

2(x̄1 + x̄2)
)T

S
−1(x̄1 − x̄2)

((x̄1 − x̄2)
TS−1ΣS−1(x̄1 − x̄2))

1/2






(3.4)

where Φ is the distribution function of a standard normal variate.
From the expressions above, we can see that the arguments are still

functions of unknown parameters, so these error rates can not be com-
puted directly from the given training data alone. Consequently a
procedure for estimating these error rates is needed.
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There is vast amount of literature available on estimation of error
rates in discriminant analysis using LDF given by (2.2). Extensive bib-
liographies can be found in Toussaint (1974), and see also McLachlan
(1986). However, this paper only deals with some of the error rate
estimators which are either have been shown to be robust or have been
implemented in computer software for estimating misclassification pro-
babilities. The estimates of the actual error rates P1 and P2 are denoted
respectively by P̂1(e) and P̂2(e), and the estimate of the overall actual

error rate is given by P̂ (e) = (n1P̂1(e) + n2P̂2(e))/n, where e refers to
the corresponding estimators.

In this paper we consider two different types of estimators, namely
(1) parametric estimators, (2) empirical (non bootstrap) estimators.
The bootstrap estimators will be discussed in a follow up paper (see
also Mangku (1992)).

4. Parametric Estimators

Parametric estimators mainly depend on the assumptions of mul-
tivariate normality and common covariance structure for the parent
populations. The oldest parametric estimator is the D-estimator or
”plug-in estimator” proposed by Fisher (1936). Many investigators
found that this estimator is optimistically biased for estimating the
actual error rate, particularly when the training samples are small
(see for example, Dunn and Varady (1966), and Hills (1966)). The
other parametric estimators denoted by DS, O, OS, L, and M are
modifications (improvements) of the D-estimator with various bias re-
duction terms, proposed and compared by Okamoto (1963), Lachen-
bruch (1968), Lachenbruch and Mickey (1968), McLachlan (1974a),
Page (1985), Ganeshanandam and Krzanowski (1990), and some oth-
ers. Some authors also proposed smoothed estimators as bias cor-
rections to D and DS estimators (see Glick (1978), Snapinn (1983),
Snapinn and Knoke (1985)). The above studies suggest OS (Okamoto,
1963), M (McLachlan, 1974a), and NS (Snapinn and Knoke, 1985),
to be robust mainly for normal-variables data. Hence, in this paper,
we present and discuss these three estimators, which are described as
below:

(a) Okamoto’s estimator (OS): Okamoto (1963) considered an asymp-
totic approach to the distribution of W (x) and proposed asymptotic
expansions in terms of n1 , n2 , p, and D2

s for estimating P1 and P2.
The OS estimator for P1 is given by

P̂1(OS) = Φ

(

−
Ds

2

)

+ φ

(

−
Ds

2

) [

D3
s/4 + 3Ds(p − 1)

4n1D2
s

]

+φ

(

−
Ds

2

) [

D3
s/4 − Ds(p − 1)

4n2D2
s

+
Ds(p − 1)

4(n − 2)

]

, (4.1)

where D2
s = (n−p−3)D2/(n−2), D2 = (x̄1− x̄2)

T
S
−1(x̄1− x̄2), φ and

Φ are respectively the density and distribution functions of a standard
normal variate, and p is the number of variables in the training data.
The expression for P̂2(OS) can be obtained by interchanging n1 and
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n2 in (4.1). Note here that D2 is the estimated (sample) Mahalanobis
squared distance between the populations Π1 and Π2.

(b) McLachlan’s estimator (M): McLachlan (1974a) gave an asymptotic
unbiased estimator for the actual error rate P1 in the form

P̂1(M) = Φ

(

−
D

2

)

+ φ

(

D

2

) [

p − 1

Dn1
+

4D(4p − 1) − D3

32n − 64

+
D(p − 1)(p − 2)

4n2
1

+
(p − 1)(−D3 + 8D(2p + 1) + 16/D)

64n1(n − 2)

+
3D7 − 4(24p + 7)D5 + 16(48p2 − 48p − 53)D3

12288(n − 2)2

+
192D(15 − 8p)

12288(n − 2)2

]

. (4.2)

Similarly, P̂2(M) is obtained by interchanging n1 and n2 in (4.2).

(c) The Smoothed estimator (NS): Glick (1978) proposed a new class
of estimators called the smoothed estimators. Glick’s study was later
generalized by Snapinn (1983), and Snapinn and Knoke (1985) who
suggested an improved smoothed estimator called the NS estimator.
The NS estimates for P1 and P2 are given by

P̂1(NS) = Φ

[

−
D

2

(

n1

c2n1 + n1 − 1

)2
]

and

P̂2(NS) = Φ

[

−
D

2

(

n2

c2n2 + n2 − 1

)2
]

, (4.3)

where

c =

[

(p + 2)(n1 − 1) + (n2 − 1)

n1(n1 + n2 − p − 3)

]1/2

.

5. Empirical Estimators (Non Bootstrap)

The error rate estimators which are free from the assumption of mul-
tivariate normality are generally called the empirical estimators. These
empirical estimators include the resubstitution estimator as well as the
estimators using resampling techniques such as cross-validation, jack-
knifing, and bootstrapping. We will discuss the bootstrap estimators
separately in a follow up paper. In this paper, we consider the resub-
stitution or the R estimator (smith, 1947), the U estimator (Lachen-
bruch, 1967), the Ū estimator (Lachenbruch and Mickey, 1968), and
the jackknife estimator.

(a) The Resubstitution (R) estimator: This estimator was proposed by
Smith (1947). The basic idea is to reallocate each individual in the
training sample t using the rule W (x, t) to asses the performance of
this rule. Estimate of the error rate is then given by the proportion of
those individuals which are misclassified by the rule W (x, t). Let the
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”counting criterion” Q(i, j) = 0 if i = j, and Q(i, j) = 1 if i 6= j, for
any i and j. Then the R estimator can be defined as

P̂1(R) =
1

n1

n1
∑

j=1

Q[1, W (x1j , t)] and P̂2(R) =
1

n2

n2
∑

j=1

Q[2, W (x2j , t)]. (5.1)

These are obvious nonparametric estimators of the actual error rates,
and the overall estimator is often referred to as the Apparent Error
Rate. This overall estimator provides a highly overoptimistic assess-
ment of the actual error rate, since it is obtained by applying the clas-
sification rule W (x, t) to the same data used in its construction.

(b) The U estimator: Lachenbruch (1967) introduced this empirical es-
timator which depends on the well-known leave-one-out technique (a
particular choice of the general cross-validation procedure). The basic
idea is to estimate the actual error rates by deleting an individual from
the training sample t each time, and then construct a classification rule
using the remainder to allocate the deleted individual using this clas-
sification rule. This process is repeated until each individual has been
deleted once from t. The estimate of the error rate is then given by
the proportion of the deleted individuals which are misclassified by the
corresponding classification rules. Let t[ij] denotes the original training
sample t with observation xij omitted (i = 1, 2 and j = 1, 2, . . . , ni).
The U estimators are then given by

P̂1(U) =
1

n1

n1
∑

j=1

Q[1, W (x1j , t[1j])] and

P̂2(U) =
1

n2

n2
∑

j=1

Q[2, W (x2j , t[2j])]. (5.2)

Furthermore, Lachenbruch and Mickey (1968) suggested a procedure
to avoid inversions of several sample covariance matrices associated
with various t[ij], and hence to accelerate the computations. This pro-
cedure can be summarized as below. Using the notations before, let
x̄1 and x̄2 be the sample mean vectors and S be the pooled sample
covariance matrix computed from the original training sample t. For
j = 1, 2, . . . , n1, delete x1j from t, and let t[1j] denote the training
data t without x1j. Let u1j = x1j − x̄1, c1 = n1/((n1 − 1)(n − 2)),

a1j = u
T
1jS

−1
u1j, and S1j be the pooled sample covariance matrix from

t[1j]. Then S
−1
1j can be obtained as

S
−1
1j = S

−1 +

[

c1S
−1

u1ju
T
1jS

−1

1 − c1a1j

]

.

Note that the only inversion required here is S
−1 which is computed

only once for the data under study. This S
−1
1j is used in the rule W (x)
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re-written as

W1j(x1j) =

(

n − 3

n − 2

) {

x1j −
1

2
(x̄1 + x̄2) +

u1j

2(n1 − 1)

}T

S
−1
1j

{

(x̄1 − x̄2) −
u1j

(n1 − 1)

}

(5.3)

to be used as W (x1j, t[1j]) in P̂1(U) of (5.2). Similar construction can

be performed to obtain P̂2(U). Here for j = 1, 2, . . . , n2, delete x2j

from t, and let t[2j] denote t without x1j. Also let u2j = x2j − x̄2,

c2 = n2/((n2 − 1)(n − 2)), a2j = u
T
2jS

−1
u2j, and S2j be the pooled

sample covariance matrix from t[2j]. Then

S
−1
2j = S

−1 +

[

c2S
−1

u2ju
T
2jS

−1

1 − c2a2j

]

,

and the classification rule for allocating x2j is

W2j(x2j) =

(

n − 3

n − 2

) {

x2j −
1

2
(x̄1 + x̄2) +

u2j

2(n2 − 1)

}T

S
−1
2j

{

(x̄1 − x̄2) −
u2j

(n2 − 1)

}

. (5.4)

(c) The Ū estimator: This estimator was also proposed by Lachen-
bruch and Mickey (1968) by blending the empiricism of the U estimator
with the application of normal distribution theory to the classification
rules. Let w̄1 and sw1 be the means and standard deviations of values
W11(x11),W12(x12), . . . ,W1n1

(x1n1
). Also let w̄2 and sw2 be the means

and standard deviations of values W21(x21),W22(x22), . . . ,W2n2
(x2n2

).
Then normality is assumed on the LDF’s W1j(x1j)

′s and W2j(x2j)
′s

separately (j = 1, 2, . . . , ni, i = 1, 2), and the error rates P1 and P2 are
estimated by

P̂1(Ū) = Φ

(

−
w̄1

sw1

)

and P̂2(Ū) = Φ

(

−
w̄2

sw2

)

. (5.5)

(d) The Jackknife estimator (JK): The jackknife technique was firstly
introduced by Quenouille as a nonparametric method for estimating
bias (Efron, 1982). Then this method was adapted and widely applied
in various statistical estimations, for examples see Efron (1981, 1982),
Efron and Gong (1983), Efron and Stein (1981), Parr (1983), Beran
(1984), Frangos and Stone (1984), Hinkley and Wei (1984), Abel and
Berger (1986), Gong (1986), McLachlan (1986), Simonoff (1986), Wu
(1986), Kunsch (1989), and Schucany and Sheater (1989). However, in
this section we only focus on the jackknife method for estimating the
probability of misclassification in discriminant analysis.

As opposed to the leave-one-out estimator, the jackknife procedure
first computes the resubstitution error rate each time an observation
is omitted from the training sample t. Then the standard jackknife
technique is used to correct the overall bias from the resubstitution
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error. Following Efron (1982, chapter 7) and McLachlan (1986), the
jackknife estimate of the actual error rates P1 and P2 can be written
as

P̂1(JK) = P̂1(R) + (n − 1)(R+
1 − R1(.)), and

P̂2(JK) = P̂2(R) + (n − 1)(R+
2 − R2(.)). (5.6)

Here, P̂1(R) and P̂2(R) are the resubstitution estimators given by (5.1),
R+

1 and R+
2 are given respectively by

R+
1 =

(

1

n1

)2 n1
∑

j=1

n1
∑

k=1

Q
[

1, W (x1k, t[1j])
]

and

R+
2 =

(

1

n2

)2 n2
∑

j=1

n2
∑

k=1

Q
[

2, W (x2k, t[2j])
]

, (5.7)

while R1(.) and R2(.) are given by

R1(.) =
1

n1

n1
∑

j=1







1

n1 − 1

n1
∑

k 6=j

Q
[

1, W (x1k, t[1j])
]







and

R2(.) =
1

n2

n2
∑

j=1







1

n2 − 1

n2
∑

k 6=j

Q
[

2, W (x2k, t[2j])
]







. (5.8)

Note that R1(.) and R2(.) represent the average apparent error rates
associated with W (x, t[1j])

′s and W (x, t[1j])
′s, averaged over n1 and n2

respectively.
In exhibiting the close relationship between the jackknife and the

cross-validation methods, Efron (1982) showed that the right-hand side
of equations (5.6) can be rearranged to give

P̂1(JK) = P̂1(R) + P̂1(U) − R+
1 and P̂2(JK) = P̂2(R) + P̂2(U) − R+

2 . (5.9)

Here P̂1(R) and P̂2(R) are given by (5.1), P̂1(U) and P̂2(U) are given
by (5.2), and R+

1 and R+
2 are given by (5.7). The jackknife estimators

are often used as alternatives to the leave-one-out estimators.

6. Discussion

In the previous section we have given descriptions of some error rates
estimators, namely the OS, M , NS, R, U , Ū , and JK estimators. The
natural question is, which one is the best among those methods. To
answer this question, it is important to conduct some comparative stu-
dies, to compare the performances of those existing estimators. Some
comparative studies, which comparing the performances of parametric
and empirical (non-bootstrap) estimators, have been done by Lachen-
bruch and Mickey (1968), McLachlan (1974a, 1974b, 1974c), Snapinn
and Knoke (1984), and Page (1985). The results of their studies can
be summarized as follows.

The resubstitution method has been reported optimistically biased
because of using the same data to construct as well as to evaluate the
classification rule. One other alternative is using parametric estimators.



JMA, VOL. 3, NO.1, JULI, 2004,1-10 9

When the parent populations are multivariate normal, on average, the
OS, and M estimators are the best for estimating the actual error rate.
However, the performance of these estimators deteriorate when the
parent populations are not normal. So, when the normality assumption
is questioned, we still need a better estimator.

Another alternative is using the empirical estimators such as the ones
based on cross-validation and jackknife. The best estimators among
these empirical techniques, as reported by some comparative studies
mention above, are the U , Ū , and JK estimators. These U , Ū , and JK
estimators are basically based on the leave-one-out technique. Since
this procedure holds out one observation at a time, in turn, until each
observation has been held once, the maximum number of pseudo data
created here is the same as the original sample size. Because of this
fact, the performance of these estimators deteriorate when the sample
sizes become small. In other words, when the sample sizes are small,
we still need a better estimator.

In the case of small samples, we expect the bootstrap based tech-
nique to behave better, since the number of pseudo data that can be
generated here is almost independent of the sample sizes. The number
of bootstrap samples that can be re-sampled (with replacement) from
a sample of size n is nn. Here, we can notice that the number of pseudo
data sets, namely nn, is much larger than the size of the original sam-
ple, n, even for small values of n. Estimation of the actual error rates
using the bootstrap techniques will be discussed in a follow up paper
(see also Mangku (1992)).
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