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Abstract. This paper formulates a consumption and investment
decision problem for an individual who has available a riskless asset
paying fixed interest rate and a risky asset driven by Brownian mo-
tion price fluctuations. The individual is supposed to observe his
or her current wealth only, when making transactions, that trans-
actions incur costs, and that decisions to transact can be made
at any time based on all current information. The transactions
costs is fixed for every transaction, regardless of amount trans-
acted. In addition, the investor is charged a fixed fraction of total
wealth as management fee. The investor’s objective is to max-
imize the expected utility of consumption over a given horizon.
The problem faced by the investor is formulated into a stochastic
discrete-continuous-time control problem.
Key words: transaction cost, continuous-discrete-time, stochastic
optimal control problem

1. Introduction

Since the publication of Merton’s seminal work, see Merton(1971),
stochastic optimal control and stochastic calculus techniques have been
widely applied to the area of finance. Robert. C. Merton iniatiated
the study of financial markets using continuous-time stochastic mod-
els. Merton (1971, 1990) studied the behaviour of a single agent acting
as a market price-taker who seeks to maximize expected utility of con-
sumption. The utility function of the agent was assumed to be a power
function, and the market was assumed to comprise a risk-free asset
with constant rate of return and one or more stocks, each with con-
stant mean rate of return and volatility. The only information available
to the agent were current prices of the assets. There were no transac-
tion costs. It was also assumed that the assets were divisible. In this
idealized setting, Merton was able to derive a closed-form solution to
the stochastic optimal control problem faced by the agent.
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Since then, several authors have made contributions to the stochastic
optimal control and stochastic calculus analyses of the Merton’s model.
Among them are Constantinides (1979, 1986), Cox and Huang (1989),
Davis and Norman (1990), Duffie and Sun (1990), Dumas and Lu-
ciano (1991), Lelands (1985), Magill and Constantinides (1976).

The introduction of transaction costs to Merton’s model was first ac-
complished by Magill and Constantinides (1976). Since then, several
authors have published a number of works on Merton’s model with
transaction costs. To mention a few, they are Constantinides (1979,
1986), Davis and Norman (1990), Duffie and Sun (1990), Dumas and
Luciano (1991), Lelands (1985). Duffie and Sun (1990) treated the pro-
portional transaction costs with different formulation to others, which
they call discrete-continuous-time formulation. Their formulation as-
sumes that an investor observes current wealth when making transac-
tion, and decisions to transact can be made at any time, but without
no costs. They treated general linear transaction costs of the form
a Wτn

+ b, with Wτn
denotes the amount of wealth transacted, and

a and b are non-negatives. This paper treates Merton’s model with
fixed (bullet) transaction costs.

2. Formulation of the Model

2.1. Uncertainty. The following definitions on probability are stan-
dard.1 It is assumed that a complete probability space (Ω,F , P ) is
given. In addition, it is assumed that a filtration {Ft : t ≥ 0} is also
given. By a filtration is meant a family of σ- algebras {Ft : t ≥ 0}
which is increasing : Fs ⊂ Ft if s ≤ t.

Definition 2.1. A filtered complete probability space ( Ω,F , ( Ft)0≤t<∞,

P ) is said to satisfy the usual hypotheses if

1. F0 contains all the P -null sets of F
2. the filtration {Ft : t ≥ 0} is right continuous.

A stochastic process X on (Ω,F , P ) is a collection of random
variables {Xt : t ≥ 0}. The process X is said to be adapted if Xt

is Ft measurable for each t.

Definition 2.2. A process B = {Bt : t ≥ 0} adapted to {Ft : t ≥ 0}
taking values in R is called a one-dimensional standard Brownian

motion if

1. B0 = 0, almost surely;
2. for 0 ≤ s < t < ∞, Bt − Bs is independent of Fs;
3. for 0 < s < t, Bt − Bs is N(0, t − s).

1Some notions in this part are derived from Protter (1990)



JMA, VOL. 2, NO.1, JULI, 2003,25-36 27

In this study, it is assumed that the one-dimensional standard Brow-
nian motion B = {Bt : t ≥ 0} is given on a given filtered probability
space (Ω,F , (Ft)0≤t<∞, P )

2.2. Security Markets.

Definition 2.3. A riskless security is defined to be a security whose
return in the future time is known with certainty. A risky security is
one for which the return in the future is uncertain.

There are two securities available in the economy to an investor. One
is a riskless security with fixed interest rate r, and the other is a risky
security whose price is a geometric Brownian motion with expected
rate of return α and rate of return variation σ2. At time t ≥ 0, the
price processes {P0(t)} of the riskless security satisfy a deterministic
differential equation

dP0(t) = rP0(t)dt, (2.1)

while the price processes {P1(t)} of the risky security satisfy a stochas-
tic differential equation

dP1(t) = αP1(t)dt + σP1(t)dBt. (2.2)

There is money available for the investor in the economy as a medium of
exchange and numeraire. Only money is exchangable for consumption.
Money can only be acquired by selling securities, it cannot be borrowed.
Let Mt denotes money holdings at time t. One unit of money can be
exchanged at any time for one unit of consumption. The investor is
assumed to receive no further income from noncapital sources, and
starts with the initial stock of money M0 = 0.

2.3. Transaction costs.

Definition 2.4. A portfolio transaction consists of withdrawing wealth
in the form of money from the investment portfolio in the securities and
then adjusting the portfolio of securities.

Trading opportunities are available continuously in time, but not
without costs. Transactions costs are incurred when information is
processed and a portfolio transaction is made. There are two forms
of transaction costs: portfolio management fees and withdrawal costs.
The investor pays a fraction ε > 0 of the total wealth in the securities
at the beginning of each interval as a portfolio management fee. The
portfolio management fee is meant to include the cost of adjusting
the portfolio and the cost of processing information. For the purpose
of analyses in this paper, transactions costs is the costs which incurs
during withdrawing wealth from the portfolio.

Definition 2.5. A transaction costs is meant the withdrawal costs,
which is a function of amount of wealth withdrawn from the portfolio.
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The transaction costs function is a fixed for every transaction, re-
gardless of amount of wealth transacted. Let Ψ be a transaction costs
function. If Wτn

denotes the amount of wealth withdrawn at time τn,

then Ψ is defined by

Ψ(Wτn
) =

{

b > 0, if Wτn
> 0

0, otherwise.

Then the total transaction costs function is of the form b+ε(Xτn
−Wτn

),
where Xτn

is the total wealth at time τn before transaction.

2.4. Information. The Filtration (Ft) defined by Ft = σ {Bs : s ≤
t }, will be interpreted as information available up to time t. That is,
measurability with respect to Ft is equivalent to measurability with
respect to market information up to time t. Given the structure of
transaction costs, consumption and investment decisions are made at
intervals. During each interval there is no transaction. All dividends
of risky security are re-invested continually in the risky security, and
all interest income is re-invested continually in the riskless security.

The investor chooses instants of time at which to process information
and make consumption and investment decisions. In other words, in-
formation is available continuously through the filtration {Ft : t ≥ 0}.
The investor receives information via controllable filtration

H = {Ht : t ≥ 0} with Ht = Ft, t ∈ [τn, τn+1),

where τn is a Hτn−1
-measurable stopping time at which the n-th trans-

action occurs. The filtration H is controllable in the sense that the in-
vestor is allowed to choose any sequence τ = {τn : n = 1, 2, 3, ...} of such
transaction times with τ1 ≡ 0. Let T = {Tn = τn+1−τn : n = 1, 2, 3, ...}
denotes the corresponding sequence of transaction intervals. Finding
an optimal stopping policy τ is clearly equivalent to finding an optimal
transaction interval policy T.

2.5. The Model.

2.5.1. Preferences. Let the consumption space C for the investor con-
sists of positive H-adapted consumption processes C = {Ct : t ≥ 0}

satisfying
∫ t

0
Csds < ∞ almost surely for all t ≥ 0, and

E[

∫ ∞

0

e−δ tu(Ct)dt] < ∞, (2.3)

where E denotes the expected value function, with respect to P, Tf <

∞ is the final time, δ is a strictly positive scalar discount factor and
the utility function u, is one of the HARA (hyperbolic absolute risk-
aversion) type function, as defined in Merton (1971). We take u as
given by

u(C) =
1

γ
Cγ , 0 < γ < 1. (2.4)
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2.5.2. Feasible policies. Let τ = {τn : n = 1, 2, 3, ...} be sequence of
transaction times with τ1 ≡ 0. Let T = {Tn = τn+1 − τn, n = 1, 2, 3, ...}
be the sequence of corresponding transaction intervals. Let W = {Wτn

:
n = 1, 2, 3, ...} be the sequence of money withdrawal processes, and
V = {Vτn

: n = 1, 2, 3, ...} be the sequence of investment for the risky
security.

Let T denote the space of sequences of strictly positive transaction
intervals, W the space of positive H-adapted money withdrawal pro-
cesses, and V the space of H-adapted investment processes for the risky
security. Let U = T ×W × V × C.

Definition 2.6. A budget policy is a quadruplet (T,W, V, C) ∈ U .

We characterize budget feasible policies as follows. Let U denotes
a class of budget policies. Given a policy (T,W, V, C) ∈ U , then the
money holding at any time t is defined by

Mt =
∑

{n:τn≤t}

[ Wτn
− Ψ(Wτn

) ] −

∫ t

0

Cs ds, (2.5)

where Ψ is the fixed (bullet) transaction costs function.

Let Xτn
denotes the total wealth invested in the securities at time τn,

before the nth transaction. Let Wτn
denotes the amount of money

withdrawn at time τn from the total wealth Xτn
, and Vτn

denotes
the market value of the investment in the risky security chosen at time
τn. After an amount Wτn

is withdrawn from the total wealth Xτn
,

and a fraction ε of the remainder, is paid as management fees, then
the wealth left for re-investment is Zτn

= ( 1−ε) [ Xτn
−Wτn

]. Of this
amount, Vτn

is invested in the risky security with a per-dollar payback
of Γn+1 at the next transaction date, including continually re-invested
dividends. And the remainder, Zτn

− Vτn
, is invested in the riskless

security at the continuously compounding interest rate r > 0.

The investor’s total wealth invested at the time of the (n + 1)th trans-
action is therefore, for n = 1, 2, 3, ...,

Xτn+1
= ( 1 − ε ) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ]. (2.6)

According to the equation (2.2) and the Itô’s formula,2 the return of
the risky investment Γ satisfies

Γn+1 = exp [(α −
1

2
σ2) Tn + σ (Bτn+1

− Bτn
)]. (2.7)

Since M0 = 0, then X0 is considered as the initial wealth endowment
for the investor.

2Details may be found in Karatzas and Shreve (1988), or Protter (1990)
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Definition 2.7. The budget policy (T,W, V, C) ∈ U is budget fea-
sible policy if the associated money process M of (2.5) and invested
wealth process X of (2.6) are non-negative.

3. Optimal Control Statement of the Problem

Definition 3.1. Let U be the set of all budget feasible policies as
defined previously. The optimal control problem for the investor is to
maximize

U(X0) ≡ max
(T,W,V,C)∈U

E [

∫ ∞

0

e−δt u(Ct) dt], (3.1)

subject to, for n = 1, 2, 3, ...,

Xτn+1
= ( 1 − ε ) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ], (3.2)

with Mt ≥ 0, and Xτn+1
≥ 0.

We assume that only money is available to the investor as a medium of
exchange and numeraire in the economy. Only money is exchangeable
for consumption. It is also assumed that money cannot be borrowed, it
can only be acquired by selling the securities, and it is put in the purse
M. Because there exists a riskless security with a positive interest rate
in the economy, there is no investment demand for money. Duffie and
Sun (1990) argued that it will not be optimal for the investor to with-
draw more money than the amount needed for financing consumption
before the next transaction.

The following result is similar to those in Duffie and Sun (1990).

Theorem 3.2. Let the value function U be defined as in ( 3.1), and
the transaction costs function Ψ(Wτn

) = b, b ≥ 0. Then the optimal
policy (T,W, V, C) must satisfy for all n = 1, 2, 3, ...

∫ τn+1

τn

Ct dt = Wτn
− b. (3.3)

Proof : Let (T,W, V, C) be an optimal policy. Suppose that there
exists an interval Tj = τj+1 − τj such that d > 0 where d is defined
by

d = Wτj
− b −

∫ τj+1

τj

Ct dt.

Because there exists a riskless security with a positive interest rate, then
the investor will be better off if the amount d is invested in the riskless
security during the interval Tj, and the interest income d (er Tj − 1)
is consumed in the next interval. In other words, the optimal policy
(T,W, V, C) is dominated by a feasible policy (T,W, V, C), which is
defined by

W τj
= b +

∫ τj+1

τj

Ct dt,
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W τj+1
= Wτj+1

+ d erTj > Wτj+1
,

Ct = Ct +
1

Tj+1

d (erTj − 1) > Ct, t ∈ [τj+1, τj+2),

Ct = Ct, W τj
= Wτj

, otherwise.

This contradicts with the fact that (T,W, V, C, ) is optimal. Therefore,
for all n,

∫ τn+1

τn

Ct dt ≥ Wτn
− b.

On the other hand, all of expenditures must be financed from the stock
of money. Therefore, for all n,

n
∑

i

∫ τi+1

τi

Ct dt ≤
n

∑

i

[ Wτi
− b ].

Therefore, for all n, an optimal policy (T,W, V, C) must satisfy
∫ τn+1

τn

Ct dt = Wτn
− b.

Hence, the proof of Theorem 3.2 has been completed

Corollary 1. By the definition of money holding Mt of equation (2.5),
then

Mτn
= Wτn

− b, n = 1, 2, 3, ...

Therefore, the optimal control problem (3.1)-(3.2) is equivalent to
the optimal control problem :

U(X0) = max
(T,W,V,C)∈U

E [

∫ ∞

0

e−δ t u(Ct) dt ] (3.4)

subject to, for n = 1, 2, 3, ...,
∫ τn+1

τn

Ct dt = Wτn
− b, (3.5)

Xτn+1
= (1 − ε) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ] ≥ 0. (3.6)

The term under the expectation in (3.4) may be re-written as :
∫ ∞

0

e−δ t u(Ct) dt =
∞

∑

n=1

e−δ τn

∫ τn+1

τn

e−δ (t − τn) u(Ct) dt.

Therefore, the equation (3.4) may be re-written as :

U(X0) = E [
∞

∑

n=1

e−δ τn

∫ τn+1

τn

e−δ (t − τn) u(Ct) dt ].

Hence, the control problem (3.4) - (3.6) can be solved in two steps.



32 EFFENDI SYAHRIL

In the first step, the control problem for consumption between trans-
action intervals is solved for any given budget feasible (T,W, V ). This
control problem is a deterministic continuous-time control problem,
because the consumption C is adapted to the filtration H. Let the
objective function for this problem be denoted by J. In the sec-
ond step, the investor chooses a budget feasible (T,W, V ) to maximize

E [
∑∞

n=1 e−δ τn J(Tn,Mτn
) ]. This is similar to a stochastic discrete-

time control problem except that the sequence T of transaction inter-
vals is controllable.

Consider an investor with an initial money endowment Z and time-
horizon t. The deterministic control problem for the investor is to
maximize the objective function

J(t, Z) ≡

∫ t

0

exp(−δs) u(Cs) ds (3.7)

over {Cs : 0 ≤ s ≤ t}, subject to :
∫ t

0

Cs ds ≤ Z. (3.8)

Theorem 3.3. The optimal value function J for the deterministic
control problem (3.7) - (3.8) satisfies

J(t, Z) = (
1 − γ

δ
)
1−γ

[1 − exp(−
δ

1 − γ
t)]

1−γ 1

γ
Zγ . (3.9)

Proof : The above problem falls in the category of isoparametric
problem in the calculus of variations (see Alekseev and others(1987)).
Hence, the above problem can be solved by a Lagrange multiplier
technique. Since the problem is to maximize consumption, then the
consumption can always be increased such that the left hand side of
equation (3.8) is equal to the right hand side of equation (3.8). By
appending (3.8) into (3.7), then a Lagrange multiplier gives

L =

∫ t

0

[exp(−δs) u(Cs) − λCs] ds + λZ,

where λ is a Lagrange multiplier. A necessary condition for C to
maximize the augmented integrand of L is that it satisfies the Euler
equation

exp(−δτ) u′(Cτ ) = λ.

Therefore, the Lemma is proved by solving the following problem:

exp(−δτ) u′(Cτ ) = λ, (3.10)

where u′ denotes the first derivative of the utility function u , Cτ

denotes the optimal consumption at time τ.



JMA, VOL. 2, NO.1, JULI, 2003,25-36 33

From the definition of the utility function u in equation (2.4), then
its first derivative u′ is given by

u′(Cτ ) = Cγ−1
τ , 0 < γ < 1.

Then by substituting this derivative into (3.10) yields

Cτ = [ λ exp(δ τ) ]−1/(1−γ)
. (3.11)

Since the control problem is to maximize the utility function, then Cτ

optimal must satisfy

Z =

∫ t

0

Cτ dτ.

Use the last equation and equation (3.11) to get

Cτ = (
1 − γ

δ
)
−1

[1 − exp(−
δ

1 − γ
t)]

−1

Z exp(−
δ

1 − γ
τ). (3.12)

Finally, by insertion of equation (3.12) into (3.7) results in

J(t, Z) = (
1 − γ

δ
)
1−γ

[1 − exp(−
δ

1 − γ
t)]

1−γ 1

γ
Zγ

Since 0 < γ < 1, then without loss of the generality, the term

(
1 − γ

δ
)
1−γ

will be left out in future discussions. Therefore, by Corol-

lary 1,

J(Tn,Mτn
) = [1 − exp(−

δ

1 − γ
Tn)]

1−γ 1

γ
(Wτn

− b)γ.

Now let Qn = 1 − exp(− δ
ν
Tn), with ν = 1 − γ. Then we have the

modified stochastic optimal control problem as given by

U(X0) = max
{T∈T ,W∈W,V ∈V}

E [
∞

∑

n=1

e−δτn Qν
n

1

γ
( Wτn

− b )γ], (3.13)

subject to

Xτn+1
= (1 − ε) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ] ≥ 0, (3.14)

where Tn = τn+1 − τn for n = 1, 2, 3, ....

The application of Bellman principle on U, results in

U(Xτn
) = max

{Tn,Wτn ,Vτn}
{Qν

n

1

γ
(Wτn

− b)γ + e−δTn E [U(Xτn+1
) | Hτn

]},

(3.15)

subject to

Xτn+1
= (1 − ε) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ], (3.16)

for n = 1, 2, 3, ....

We summarize the problem faced by the investor in the following defi-
nition.
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Definition 3.4. Let U be the set of all budget feasible policies as
defined previously. The optimal control problem for the investor is to
maximize

U(Xτn
) = max

{Tn,Wτn ,Vτn}
{Qν

n

1

γ
(Wτn

− b)γ + e−δTn E [U(Xτn+1
) | Hτn

]},

(3.17)

subject to

Xτn+1
= ( 1 − ε ) [ Xτn

− Wτn
] er Tn + Vτn

[ Γn+1 − er Tn ], (3.18)

for n = 1, 2, 3, ..., with Mt ≥ 0, and Xτn+1
≥ 0.

The following result is proved in Duffie and Sun (1990) but is given for
completeness.

Lemma 3.5. Let Q(n) = [1 − exp(− δ
ν
Tn)]

ν
. Suppose that f is a

real-valued function on [ 0, ∞) satisfying the two conditions :
(i) For all n = 1, 2, 3, ...,

f(Xτn
) = max

(Tn,Wτn ,Vτn)
{ Q(n)

1

γ
(Wτn

− b)γ + E [ e−δ Tn f(Xτn+1
) ] | Hτn

}.

(3.19)

(ii) For any feasible policy,

lim
n → ∞

E [ e−δ τn f(Xτn
) ] = 0. (3.20)

If (T ∗,W ∗, V ∗) achieves the maximum in ( 3.19) for all n then f is
the value function for the control problem ( 3.13), and (T ∗,W ∗, V ∗)
is an optimal policy.

Proof : Let n = 1, to begin with, that is τ1 = 0. Then

f(X0) = max
(T1,W0,V0)

{ Q(1)
1

γ
(W0 − b)γ + E [e−δ T1f(Xτ2)]}

≥ Q(1)
1

γ
(W0 − b)γ + e−δ T1 E [ f(Xτ2) ]

for any feasible T1, W0, V0. By induction, for any (T,W, V ) ∈
T × W × V then

f(X0) ≥ E [
n

∑

i=1

e−δτi Q(i)
1

γ
(Wτi

− b)γ + e−δτn+1 f(Xτn+1
) ].

Let n → ∞, it follows by condition (ii) of Lemma 3.5 that

f(X0) ≥ E [
∞

∑

n=1

e−δ τn Q(n)
1

γ
(Wτn

− b)γ ].

This holds for an arbitrary feasible policy (T, V,W ) . Hence,

f(X0) ≥ U(X0).
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On the other hand, U(X0) ≥ f(X0) by the definition of U(X0).
Henceforth, f(X0) = U(X0), and consequently (T ∗,W ∗, V ∗) is
optimal
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