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Abstract. Representation which generates the observed process
of a hidden Markov model is not unique. The simplest one, that is,
the one with minimum size is called a true parameter. This article
is aimed to present characteristics of this parameter.
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1. Introduction

According to [3], representation for a hidden Markov model is not
unique. Our main interest is to find the simplest one, that is, the one
with minimum size. Such representation will be called a true param-

eter. Our task is to identify a true parameter and its size. Therefore,
the main aim of this article is to collect facts concerning the true pa-
rameter.

For this purpose, we begin with definition of a hidden Markov model,
representations and equivalent representations in the first section. The
second section will present definion of a true parameter of a hidden
Markov model and its characteristics.

2. A hidden Markov model and its representations

Let {Xt : t ∈ N} be a finite state Markov chain defined on a prob-
ability space (Ω,F , P ). Suppose that {Xt} is not observed directly,
but rather there is an observation process {Yt : t ∈ N} defined on
(Ω,F , P ). Then consequently, the Markov chain is said to be hidden

in the observations. A pair of stochastic processes {(Xt, Yt) : t ∈ N}
is called a hidden Markov model. Precisely, according to [1], a hidden
Markov model is formally defined as follows.
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Definition 2.1. A pair of discrete time stochastic processes {(Xt, Yt) :
t ∈ N} defined on a probability space (Ω,F , P ) and taking values in
a set S × Y , is said to be a hidden Markov model (HMM), if it
satisfies the following conditions.

1. {Xt} is a finite state Markov chain.
2. Given {Xt}, {Yt} is a sequence of conditionally independent ran-

dom variables.
3. The conditional distribution of Yn depends on {Xt} only through

Xn.
4. The conditional distribution of Yt given Xt does not depend on t.

Assume that the Markov chain {Xt} is not observable. The cardi-
nality K of S, will be called the size of the hidden Markov model.

Since the Markov chain {Xt} in a hidden Markov model {(Xt, Yt)}
is not observable, then inference concerning the hidden Markov model
has to be based on the information of {Yt} alone. By knowing the finite
dimensional joint distributions of {Yt}, parameters which characterize
the hidden Markov model can then be analysed.

From [3], it can be seen that the law of the hidden Markov model
{(Xt, Yt)} is completely specified by :
(a). The size K.
(b). The transition probability matrix A = (αij), satisfying

αij ≥ 0 ,

K∑

j=1

αij = 1, i, j = 1, . . . , K.

(c). The initial probability distribution π = (πi) satisfying

πi ≥ 0, i = 1, . . . , K,

K∑

i=1

πi = 1.

(d). The vector θ = (θi)
T , θi ∈ Θ, i = 1, . . . , K, which desribes the con-

ditional
densities of Yt given Xt = i, i = 1, . . . , K.

Definition 2.2. Let

φ = (K,A, π, θ).

The parameter φ is called a representation of the hidden Markov
model
{(Xt, Yt)}.

Thus, the hidden Markov model {(Xt, Yt)} can be represented by a
representation φ = (K,A, π, θ).

On the otherhand, we can also generate a hidden Markov model
{(Xt, Yt)} from a representation φ = (K,A, π, θ), by choosing a Markov
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chain {Xt} which takes values on {1, . . . , K} and its law is determined
by the K ×K-transition probability matrix A and the initial probabil-
ity π, and an observation process {Yt} taking values on Y , where the
density functions of Yt given Xt = i, i = 1, . . . , K are determined by
θ.

Let φ = (K,A, π, θ) and φ̂ = (K̂, Â, π̂, θ̂) be two representations

which respectively generate hidden Markov models {(Xt, Yt)} and {(X̂t, Yt)}.

The {(Xt, Yt)} takes values on {1, . . . , K}×Y and {(X̂t, Yt)} takes val-

ues on {1, . . . , K̂}×Y . For any n ∈ N , let pφ(·, · · · , ·) and pbφ
(·, · · · , ·)

be the n-dimensional joint density function of Y1, . . . Yn with respect to

φ and φ̂. Suppose that for every n ∈ N ,

pφ(Y1, . . . , Yn) = pbφ
(Y1, . . . , Yn).

Then {Yt} has the same law under φ and φ̂. Since in hidden Markov

models {(Xt, Yt)} and {(X̂t, Yt)}, the Markov chains {Xt} and {X̂t}
are not observable and we only observed the values of {Yt}, then the-

oretically, the hidden Markov models {(Xt, Yt)} and {(X̂t, Yt)} are in-

distinguishable. In this case, it is said that {(Xt, Yt)} and {(X̂t, Yt)} are

equivalent. The representations φ and φ̂ are also said to be equivalent,

and will be denoted as φ ∼ φ̂.

For each K ∈ N , define

ΦK =
{

φ : φ = (K,A, π, θ), where A, π and θ satisfy :

A = (αij), αij ≥ 0,
K∑

j=1

αij = 1, i, j = 1, . . . , K

π = (πi), πi ≥ 0, i = 1, . . . , K,

K∑

i=1

πi = 1

θ = (θi)
T , θi ∈ Θ, i = 1, . . . , K

}
(2.1)

and

Φ =
⋃

K∈N

φK . (2.2)

The relation ∼ is now defined on Φ as follows.

Definition 2.3. Let φ, φ̂ ∈ Φ. Representations φ and φ̂ are said to be
equivalent, denoted as

φ ∼ φ̂

if and only if for every n ∈ N ,

pφ(Y1, Y2, . . . , Yn) = pbφ
(Y1, Y2, . . . , Yn).
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Remarks 2.4. It is clear that relation ∼ forms an equivalence relation
on Φ.

Let φ = (K,A, π, θ) ∈ ΦK , then under φ, Y1, . . . , Yn, for any n, has
joint density

pφ(y1, . . . , yn) =
K∑

x1=1

· · ·
K∑

xn=1

πx1
f(y1, θx1

) ·
n∏

t=2

αxt−1,xt
f(yt, θxt

). (2.3)

Let σ be any permutation of {1, 2, . . . , K}. Define

σ(A) = (ασ(i),σ(j))

σ(π) = (πσ(i))

σ(θ) = (θσ(i))
T .

Let

σ(φ) = (K,σ(A), σ(π), σ(θ)),

then σ(φ) ∈ ΦK and easy to see from (2.3) that

pφ(y1, . . . , yn) = pσ(φ)(y1, . . . , yn).

implying φ ∼ σ(φ). So we have the following lemma.

Lemma 2.5. Let φ ∈ ΦK, then for every permutation σ of {1, 2, . . . , K},

σ(φ) ∼ φ.

from [3], we have the following lemmas.

Lemma 2.6. Let φ = (K,A, π, θ) ∈ ΦK, where π is a stationary prob-
ability distribution of A. Let N be the number of non-zero πi. Then

there is φ̂ = (N, Â, π̂, θ̂) ∈ ΦN , such that :

1. π̂i > 0, for i = 1, . . . , N .

2. π̂ is a stationary probability distribution of Â.

3. φ ∼ φ̂.

Lemma 2.7. For any K ∈ N and φ ∈ ΦK, there is φ̂ ∈ ΦK+1, such

that φ ∼ φ̂.

By Lemma 2.7, we can define an order ≺ in {ΦK}.

Definition 2.8. Define an order ≺ on {ΦK} by

ΦK ≺ ΦL, K, L ∈ N ,

if and only if for every φ ∈ ΦK , there is φ̂ ∈ ΦL such that φ ∼ φ̂.
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As a consequence of Lemma 2.7, Lemma 2.9 follows.

Lemma 2.9. For every K ∈ N ,

ΦK ≺ ΦK+1.

From Lemma 2.9, the families of hidden Markov models represented
by {ΦK} are nested families.

3. A true parameter and its characteristics

We begin this section with a formal definition of a true parameter.

Definition 3.1. Let {(Xt, Yt)} be a hidden Markov model with repre-
sentation φ ∈ Φ. A representation φo = (Ko, Ao, πo, θo) ∈ Φ, is called a
a true parameter of the hidden Markov model {(Xt, Yt)} if and only
if

1. φo ∼ φ.

2. Ko is minimum, that is, there is no φ̂ ∈ ΦK , with K < Ko, such

that φ̂ ∼ φo.

A true parameter φo = (Ko, Ao, πo, θo) of a hidden Markov model
{(Xt, Yt)} is not unique, by Lemma 2.5, for every permutation σ of
{1, . . . , Ko},

σ(φo) ∼ φo.

So σ(φo) is also a true parameter of the hidden Markov model {(Xt, Yt)}.

As a straight consequence of Definition 3.1, we have the following
lemma.

Lemma 3.2. Let φo = (Ko, Ao, πo, θo) be a true parameter of a hidden
Markov model {(Xt, Yt)}. Then there is no φ ∈ ΦK, with K < Ko such
that φ ∼ φo.

The next two lemmas show some properties of true parameter which
generates a stationary hidden Markov model.

Lemma 3.3. Let φo = (Ko, Ao, πo, θo) be a true parameter of a hidden
Markov model {(Xt, Yt)}. If πo is a stationary probability distribution
of Ao, then

πo
i > 0, for i = 1, . . . , Ko.

Proof :

Let N o be the number of non-zero πo
i ’s, then 1 ≤ N o ≤ K. If N o < Ko,

then by Lemma 2.6, there is φ = (N o, A, π, θ) ∈ ΦNo , such that φ ∼ φo,
contradicting with Lemma 3.2. Thus, it must be N o = Ko.
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Lemma 3.4. Let φo = (Ko, Ao, πo, θo) be a true parameter of a hidden
Markov model {(Xt, Yt)}, where πo is a stationary probability distribu-
tion of Ao. Let φ = (K,A, π, θ) ∈ ΦK, where φ ∼ φo and N be the
number of non-zero πi.

1. If K = Ko, then N = Ko.
2. If K > Ko, then N ≥ Ko.

Proof :

Let φ = (K,A, π, θ) ∈ ΦK , where φ ∼ φo. By Lemma 3.2,

K ≥ Ko.

Let N be the number of non-zero πi, then

1 ≤ N ≤ K.

Suppose that N < Ko, since φ ∼ φo, then π is a stationary probability

distribution of A. By Lemma 2.6, there is φ̂ = (N, Â, π̂, θ̂) ∈ ΦN , such

that φ ∼ φ̂, implying φ̂ ∼ φo, contradicting with Lemma 3.2. Thus, it
must be

Ko ≤ N ≤ K. (3.1)

If K = Ko, then by (3.1), N = Ko. If K > Ko, then N ≥ Ko.

Corollary 1. let φo = (Ko, Ao, πo, θo) be a true parameter of a hidden
Markov model {(Xt, Yt)}, where πo is a stationary probability distri-
bution of Ao. Let φ = (Ko, A, π, θ) ∈ ΦKo . If φ ∼ φo, then

πi > 0, for i = 1, . . . , Ko.

Proof :

This is part (a) of Lemma 3.4.
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