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Abstract. By using asymptotic methods, evolution equation is
derived for the internal waves in density stratified fluid. This evo-
lution equation arise as a solvability condition. A higher-order
extension of the familiar Korteweg-de Vries equation is produced
for internal waves in a density stratified flow with a free surface.
All coefficients of this extended Korteweg-de Vries equation are
expressed via integrals of the modal function for the linear theory
of long internal waves.
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1. Introduction

The Korteweg-de Vries (KdV) equation is a well-known model for the
description of nonlinear long internal waves in a fluid stratified by den-
sity. The steady-state version of this equation was produced by Long
(1953), while Benney (1966) gave the integral expressions for calcula-
tion of the coefficients of the Korteweg-de Vries equation for waves in a
fluid with arbitrary stratification in the density and current. The next
step was due to Lee and Beardsley (1974) who indicated the asymptotic
procedure needed to produce higher-order Korteweg-de Vries equations
based on two small parameters representing dispersion and nonlinear-
ity. More detailed information was obtained for interfacial waves in
a two-layer fluid, and in particular, Kakutani and Yamasaki (1978)
found the coefficient of the cubic nonlinear term in an implicit form,
and showed its importance for the certain conditions (i.e. the pycno-
cline lies in the middle of the fluid), in which case the quadratic and
cubic nonlinear terms are of the same order. Due to the negative sign
of the coefficient of the cubic nonlinear term, this situation leads to an
upper limit for the solitary wave amplitude. Then all nonlinear disper-
sive coefficients for all second order terms were found for a two-layer
fluid (Koop and Butler, 1981), and the extended Korteweg-de Vries
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equation was compared with results of laboratory experiments of inter-
nal solitary waves. The goal of this paper is to obtain a higher-order
Korteweg-de Vries equation for the internal waves in arbitrary density
and current stratified fluid without using the Boussinesq approxima-
tion, and also taking into account the free surface.

2. Governing equations

We consider two-dimensional motions of an ideal incompressible fluid
which is bounded above by a free surface and below by a rigid boundary
h. The governing equations of such fluid are shown below:

ρt + uρx + wρz = 0

ux + wz = 0

ρ(ut + uux + wuz) + px = 0 (2.1)

ρ(wt + uwx + wwz) + pz + ρg = 0,

where x, z are the horizontal and vertical coordinates, respectively, u,
w are the horizontal and vertical velocities, respectively, p denotes the
pressure, g is the gravitational acceleration, and ρ is the density. The
boundary conditions are

w = 0 at z = −h

p = 0 at z = η(x, t) (2.2)

ηt + uηx = w at z = η(x, t).

Here, the fluid has undisturbed constant depth h, and η is the displace-
ment of the free surface from its undisturbed position z = 0.

First we introduce ζ(x, z, t) as the vertical displacement of a fluid
particle from its undisturbed position, such that w = Dζ

Dt
, where D

Dt
=

∂t + u∂x + w∂z is the convective time derivative. We suppose that the
density of the fluid in the rest state is given by ρo(z). Then the density
of the fluid in the disturbed state is ρ(x, z, t) = ρo(z − ζ(x, z, t)). So
that the first equation of (2.1) is now satisfied. Also, it is convenient
to express the pressure in the form,

p(x, z, t) = −

∫ z

0

gρo(z
′)dz′ + q(x, z, t).

The isopycnal surfaces (i.e. ρ(x, z, t)= constant) are then given by

z = Z + ζ(x, z, t). (2.3)

where Z is the level as x → ±∞. In particular, we let ζ(x, z, t) =
ξ(x, Z, t). In terms of ξ, the kinematic boundary condition (the third
equation of (2.2)) becomes simply ξ = η at z = η(x, t). Next, we de-
termine how the equations transform, when we change the (x,z,t) coor-
dinate to (x,Z,t). We have relations u(x, z, t) = U(x, Z, t), w(x, z, t) =
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W (x, Z, t), and q(x, z, t) = Q(x, Z, t).

Then we can rewrite equations (2.1) as below:

Ux + WZ −
1

1 + ξZ

(UZξx + WZξZ) = 0

ρo(Z)(Ut + UUx) + Qx −
1

1 + ξZ

QZξx = 0 (2.4)

ρo(Z)(Wt + UWx) +
1

1 + ξZ

QZ + g(ρo(Z) − ρo(Z + ξ)) = 0,

and the boundary conditions (2.2) becomes

ξ = 0 at Z = −h
∫ ξ

0

gρo(z)dz = Q(x, Z, t) at Z = 0.

Also, the vertical velocity becomes

W = ξt + Uξx. (2.5)

Using (2.5), we can express (2.4) in term of U(x, Z, t), and ξ(x, Z, t) as
below:

(1 + ξZ)Ux + (∂t + U∂x) ξZ = 0

(ρo(Ut + UUx))Z + ξx

(

ρo(∂t + U∂x)
2ξ

)

Z
− (2.6)

(1 + ξZ)
(

ρo(∂t + U∂x)
2ξ

)

x
+ gρoZξx = 0.

The boundary conditions for these two equations are

ξ = 0 at Z = −h

gξx = −(Ut + UUx) − ξx (∂t + U∂x)
2
ξ at Z = 0. (2.7)

Thus, the governing equations are equations (2.6) with boundary con-
ditions at the surface and bottom (2.7). We will use these to obtain
higher order Korteweg - de Vries equation for internal waves.

3. Asymptotic expansion

We suppose that the waves are long but finite, and their amplitude
is small. We introduce the small parameter ǫ to describe long waves,
and hence define the slow variables X = ǫx, T = ǫt. Then we let the
nonlinear parameter be α, and anticipate the KdV scaling α = ǫ2. We
introduce the scaled variables

θ = X − cT, τ = αT (3.1)

where c is the speed of a linear long wave (yet to be determined). Then
on substituting (3.1) into (2.6), we find that

(cρoUθ)Z − gρoZξθ = F1

Uθ − cξθZ = F2, (3.2)
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where

F1 = −(ρo(αUτ + UUθ))Z + ǫ2(1 + ξZ)(ρoF3)θ − ǫ2ξθ(ρoF3)Z

F2 = −αξZτ − (UξZ)θ

F3 = ((U − c)∂θ + α∂τ )
2
ξ,

and boundary conditions (2.7) become

ξ = 0, at Z = −h

gξθ − cUθ = −(αUτ + UUθ + ǫ2ξθF3), at Z = 0. (3.3)

Here the left-hand side of these equations, when equated to zero, de-
scribe the linear long wave theory, and thus form the basis of our
asymptotic expansion. Equations (3.2) can be reduced to one equa-
tion containing ξ only

(

c2ρoξθZ

)

Z
+ ρoN

2ξθ = G, (3.4)

where G = − (cρoF2)Z − F1, dan N2(Z) = −gρoZ

ρo
. The boundary

conditions (3.3) become

ξ = 0, at Z = −h

gξθ = c2ξθZ + cF2 + F4, at Z = 0, (3.5)

where F4 = −(αUτ + UUθ + ǫ2ξθF3).
We assume that our internal wave field (i.e. the vertical displace-

ment and the horizontal component of velocity) has the asymptotic
expansion

ξ = αA(θ, τ)φ(Z) + α2ξ2 + · · ·

U = Uo(Z) + αU1 + α2U2 + · · · , (3.6)

After substitution of (3.6) into equation (3.4) and the boundary con-
ditions (3.5), and collecting terms of the same order in α, we obtain at
the lowest order the equation determining the function φ(Z), and the
speed c,

(

ρo(Uo − c)2φZ

)

Z
+ ρoN

2φ = 0 − h < Z < 0

φ = 0 at Z = −h (3.7)

(Uo − c)2φZ − gφ = 0 at Z = 0.

Note that since the differential equation for φ(Z) is homogenous, we
are free to impose a normalization condition on φ(Z). A commonly
used condition is that φ(Zm) = 1, where | φ(Z) | achieves a maximum
value at Z = Zm. In this case the amplitude αA is uniquely defined
as the amplitude of ξ (to O(α)) at the depth Zm. Then, at the next
order, we obtain the equation for ξ2,

(

ρo(Uo − c)2ξ2θZ

)

Z
+ ρoN

2ξ2θ = F − h < Z < 0

ξ2θ = 0 at Z = −h (3.8)

(Uo − c)2ξ2θZ − gξ2θ = M at Z = 0,
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Here the inhomogeneous terms F , M are known in terms of A(θ, τ)
and φ(z), and are given by

F = −2 (ρo(Uo − c)φZ)Z Aτ + 3
(

ρo(Uo − c)2φ2

Z

)

Z
AAθ

−ρo(Uo − c)2φAθθθ, (3.9)

M = −2(Uo − c)φZAτ + 3(Uo − c)2φ2

ZAAθ.

Note that the left-hand side of the equation (3.8) is identical to the
equations defining the function φ (i.e. (3.7)), and hence can be solved
only if a certain solvability condition is satisfied. The solvability condi-
tion, that is, the condition for solvability of the inhomogeneous problem
(3.8) is

∫

0

−h

FφdZ = ρo(Uo − c)2(ξ2θφZ − ξ2θZφ) |Z=0

Z=−h . (3.10)

Substituting the expression (3.9) into (3.10) we obtain the required
evolution equation for A,

Aτ + µAAθ + δAθθθ = 0. (3.11)

Here, the coefficients µ and δ are given by

µ =
3
∫

0

−h
ρo(Uo − c)2φ3

ZdZ

2
∫

0

−h
ρo(c − Uo)φ2

ZdZ
, δ =

∫

0

−h
ρo(Uo − c)2φ2dZ

2
∫

0

−h
ρo(c − Uo)φ2

ZdZ
. (3.12)

Equation (3.11) is the well-known Korteweg-de Vries equation for in-
ternal waves.

4. Higher order Korteweg-de Vries equation

Substituting Aτ in (3.11) into (3.9) we obtain

F =
(

2δ (ρo(Uo − c)φZ)Z − ρo(Uo − c)2φ
)

Aθθθ +
(

3
(

ρo(Uo − c)2φ2

Z

)

Z
+ 2µ (ρo(Uo − c)φZ)Z

)

AAθ

M = 2δ(Uo − c)φZAθθθ +
(

2µ(Uo − c)φZ + 3(Uo − c)2φ2

Z

)

AAθ.

The solution of equation (3.8) in homogeneous term is A2φ, while

T (Z)Aθθ + T̂ (Z)A2 is a inhomogeneous solution of (3.8). So the general
solution of the boundary value problem (3.8) is

ξ2 = A2(θ, τ)φ(Z) + T (Z)Aθθ + T̂ (Z)A2 (4.1)

where T (Z) is the first nonlinear correction to the modal structure of
internal wave; it is solution of

(ρo − (Uo c)2TZ

)

Z
+ ρoN

2T = 2δ (ρo(Uo − c)φZ)Z − ρo(Uo − c)2φ,

−h < Z < 0

T = 0 at Z = −h, (4.2)

gT = (Uo − c)2TZ − 2δ(Uo − c)φZ at Z = 0
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while T̂ (Z) is the first dispersion correction to the modal structure of
internal wave; it is solution of

(ρo(Uo − c)2T̂Z

)

Z
+ ρoN

2T̂ = 2µ (ρo(Uo − c)φZ)Z

+
3

2

(

ρo(Uo − c)2φ2

Z

)

Z
, −h < Z < 0

T̂ = 0 at Z = −h,(4.3)

gT̂ = (Uo − c)2T̂Z − µ(Uo − c)φZ

−
3

2
(Uo − c)2φ2

Z at Z = 0.

It is important to note that solutions of the boundary-value problems
(4.2) and (4.3) are unique only up to additive multiples of φ. This
problem was discussed in Lamb and Yan (1996), and Holloway and
Pelinovsky (2001). It is convenient to let A2(θ, τ) represent the isopyc-
nal displacement at the level Z = Zm where there is a maximum in the
linear mode φ(Z). Hence we choose the auxiliary conditions T (Zm) = 0

and T̂ (Zm) = 0. In this case the series (3.6), using (4.1), at the point
Z = Zm is

α(A + αA2).

After substitution of (3.6) into equation (3.4) and the boundary con-
ditions (3.5), and collecting terms of the same order in α, we obtain

U1 = −(Uo − c)φZA

U2 = −(Uo − c)φZA2 + (δφZ − (Uo − c)TZ+) Aθθ + ((Uo− c)φ2

Z

+
1

2
µφZ − (Uo − c)T̂Z

)

A2.

Then, at the next order (O(α3)), we obtain the equation for ξ3,

(

ρo(Uo − c)2ξ3θZ

)

Z
+ ρoN

2ξ3θ = F̂ − h < Z < 0,

ξ3θ = 0 at Z = −h, (4.4)

(Uo − c)2ξ3θZ − gξ3θ = M̂ at Z = 0.

Here the inhomogeneous terms F̂ , M̂ are given by

F̂ = b1A2τ + b2(AA2)θ + b3A2θθθ + b4Aθθθθθ + b5A
2Aθ

+b6AAθθθ + b7AθAθθ (4.5)

M̂ = a1A2τ + a2(AA2)θ + a3Aθθθθθ + a4A
2Aθ + a5AAθθθ + a6AθAθθ.
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The coefficients ai and bi are given by

a1 = −2(Uo − c)φZ

a2 = 3(Uo − c)2φ2

Z

a3 = 2δ(Uo − c)TZ − δ2φZ

a4 = 4µ(Uo − c)T̂Z − 6(Uo − c)2φ3

Z + 9(Uo − c)2φZ T̂Z − 5µ(Uo − c)φ2

Z − µ2φZ

a5 = 2µ(Uo − c)TZ + 4δ(Uo − c)T̂Z + 3(Uo − c)2φZTZ − 4δ(Uo − c)φ2

Z − 2µδφZ

a6 = 6µ(Uo − c)TZ + 3(Uo − c)2φZTZ − 2δ(Uo − c)φ2

Z − (Uo − c)2φ2 − 3µδφZ

b1 = (ρoa1)Z

b2 = (ρoa2)Z

b3 = (ρo(Uo − c)2φ

b4 = (ρoa3)Z − 2δρo(Uo − c)φ + ρo(Uo − c)2T

b5 = (ρoa4)Z

b6 = (ρoa5)Z − 2µρo(Uo − c)φ − ρo(Uo − c)2φφZ + 2ρo(Uo − c)2T̂

b7 = (ρoa6)Z − 6µρo(Uo − c)φ − 3ρo(Uo − c)2φφZ + 6ρo(Uo − c)2T̂ .

The condition for solvability of the inhomogeneous problem (4.4) is
∫

0

−h

F̂ φdZ = ρo(Uo − c)2(ξ3θZφ − ξ3θφZ) |Z=0

Z=−h . (4.6)

Substituting the expression (4.5) into (4.6), we obtain the required
evolution equation of A2,

A2τ + µ(AA2)θ + δA2θθθ = β1Aθθθθθ + β2A
2Aθ + β3AAθθθ + β4AθAθθ.

(4.7)

Here, the coefficients µ and δ are given by (3.12), while β1, β2, β3, and
β4 are given by

β1 =
1

I

∫

0

−h

ρo

(

−(Uo − c)2φT + δ2φ2

Z + 2δ(Uo − c)(φ2 − φZTZ)
)

dZ

β2 =
1

I

∫

0

−h

ρo

(

3(Uo − c)2φ2

Z(2φ2

Z − 3T̂Z) + µ2φ2

Z + µ(Uo − c)(5φ2

Z − 4T̂Z)φZ

)

dZ

β3 =
1

I

∫

0

−h

ρo(2µδφ2

Z + 2µ(Uo − c)φ2 + (Uo − c)2φ2φZ − (Uo − c)2(2φT̂ + 3φ2

ZTZ)

−2(Uo − c)(µTZ + 2δT̂Z)φZ + 4δ(Uo − c)φ3

Z)dZ

β4 =
1

I

∫

0

−h

ρo((Uo − c)(2δφ3

Z + 6µφ2) + 3µδφ2

Z + 2(Uo − c)2(φ2φZ − 3φT̂ )

−6µ(Uo − c)φZTZ − 3(Uo − c)2φ2

ZTZ)dZ

I = −2

∫

0

−h

ρo(Uo − c)φ2

ZdZ.
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The isopycnal displacement at the level Z = Zm in third order O(α3)
is

ξ = αA(θ, τ) + α2A2(θ, τ) + O(α3)

= αB(θ, τ) + O(α3)

where B = A+αA2. Then, one again using (4.7), and the KdV equation
(4.32), and neglecting terms of O(α3), we obtain the higher-order KdV
equation,

Bτ + µBBθ + δBθθθ +

α
(

β1Bθθθθθ + β2B
2Bθ + β3BBθθθ + β4BθBθθ

)

= 0. (4.8)

However, we must now point out that this higher order Korteweg-de
Vries equation (4.8) is an asymptotic result valid when α is sufficiently
small, and is must likely to be useful when the coefficient µ of the qua-
dratic nonlinear term is small. Nevertheless, because observed internal
waves are often quite large, it may be useful to use (4.8) as the model
equation even when µ is not small.

5. Conclusion

We have presented an evolution equation, the extended Korteweg-de
Vries equation, to describe internal waves in an arbitrary density and
current stratified flow, without using the Boussinesq approximation and
with a free surface, valid to the second order of perturbation theory.
All the coefficients of this equation are given explicitly as integrals of
the modal function and its nonlinear and dispersion correction. It is
important to note that our derivation is completely general.
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