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This essay set in mind at first as a personal note on expository of the
Stone-Weierstrass Theorem, due to its importance in approximation
theory. During the process of studying the materials, an article by J.
Dydak & N. Feldman [1] came accross, where they shows the Stone-
Weierstrass theorem become one of consequences in a unified fashion
from topological perspectives. Hence, the aims become slightly bends,
but still catered the original aim.

We organized the essay into two major sections. The first section is
on preliminary material, this section consists of two parts. The first
part will be stating some result without proof about real-valued func-
tions algebras that plays as a basic foundation to build the exposition;
the second part will be stating some results with which the main the-
orems will be stands on. At the end of the first section, the main
theorem and its proof will be stated. The second section is only stat-
ing and proving the four major theorems in Topology, including the
Stone-Weierstrass Theorem.

1. Preliminaries

1.1. The function Algebra C(X , IR). Let X be an arbitrary topologi-
cal space. Let C(X , IR) be the set of all real-valued bounded continuous
function on X . This set equiped with point-wise addition operation
and real scalar multiplication turned to be a real vector space.

1



2 AGAH D. GARNADI

An algebra A is a vector space equiped with vector-multiplication
operation in such a way that:

1. x • (y • z) = x(•y) • z, for every x, y, z ∈ A
2. x • (y + z) = x • y + x • z for every x, y, z ∈ A and (y + z) • x =

y • x + z • x for every x, y, z ∈ A.
3. α(x • y) = (αx) • y = x • (αy), for every scalar α.

Moreover, the algebra A with identity if:

(4) There exist non-zero element in A, denoted by e and called the
identity element, such that :

e • x = x • e = x,∀x ∈ A

A subalgebra A1 of algebra A if A1 is subspace of A such that A1 is
an algebra under operation inherited from A.

In the case of C(X , IR), it is became an algebra if vector multiplication
is defined point-wise. This algebra admits an identity element e =
1, which maps 1(x) = 1 for every x ∈ X . Moreover this algebra is
commutative.

Theorem 1.1. 1. C(X , IR) is a Banach space with respect to point-

wise addition and scalar multiplication and the norm defined by

‖f‖ = sup |f(x)|.
2. If multiplication is defined point-wise, C(X , IR) is a commutative

algebra with identity, in which:

‖f g‖ <= ‖f‖ ‖g‖ and ‖1‖ = 1

3. If f <= g is definet to mean that f(x) <= g(x) for all x, C(X , IR)
is a lattice in which the greatest lower bound of a pair of functions

f and g are given by (f ∨ g)(x) = min{f(x), g(x)} and (f ∧ g) =
max{f(x), g(x)}.

Let Y be a compact Haussdorf space. Let f : X → Y be a function
such that f(X) = Y. Then f induces a function f̂ from the set C(Y ) of
all real-valued contnuous function to the set C(X, IR) via the formula

f̂(g) = g ◦ f. Let Pf denotes the image of f̂ .

Theorem 1.2. Pf is closed subalgebra of C(X , IR) and f̂ : C(Y , IR) →
Pf is an isometry of algebras.

Proof :

Clearly that, f̂ : C(Y , R) → Pf is surjective.
It is an isometry since f(X ) is dense in Y , and

|g ◦ f (x) − g′ ◦ f (x)| ≤ a,∀ x ∈ X implies: |g (y) − g′(y)| ≤ a,

∀ y ∈ † = f(X ). Since Pf is isometric to a complete space C(Y , IR),
then Pf is complete, so it is closed in C(X , IR).
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1.2. Steps toward The Grand Unification Theorem. To start
with, defines the following.

Definition 1.3. Given subalgebra P of C(X , IR). Let µ(P ) be the set of
all subalgebras τ of P which are maximal with respect to the following:

given α ∈ τ the set α−1(−ǫ, ǫ) is not empty for all ǫ > 0.
(1.1)

Theorem 1.4. If X is compact, then µ(P ) = {τx; x ∈ X}

Proof :

For any finite k, let f1, f2, · · · , fk be elements of τ ∈ µ(P ). The qua-

dratic sum:
∑k

i=1 f 2
i belongs to τ and attains its acsolute minimum at

x ∈ X . Since the values m > 0 would contradict condition (1.1), then
m = 0. Hence f1, f2, · · · , fk posses a mutual roots and all the functions
member of τ have a mutual root, since X is compact.

Definition 1.5. Given α ∈ P. Let N(α) = {τ ∈ µ(P ) : α 6∈ τ}

Theorem 1.6. N(f) ∩ N(g) = N(f · g)

Proof :

The theorem statement is equivalently stated as:
µ(P )−N(f ·g) = (µ(P )−N(f))∪(µ(P )−N(g)), which is equivalently
stated: if f · g ∈ τ then f ∈ τ or g ∈ τ.
Clearly, this statement easily recognized that τ is prime ideals of P.

If f ∈ τ and g ∈ P, choose M > 1 such that :

|g(x)| < M,∀x ∈ X

Given ǫ > 0, a ∈ IR and h ∈ τ, since f and h are members of τ, there
exists τ0 such that f 2(x0) + h2(x0) < min(ǫ2/4 · M2a2, ǫ2/4).
Then |(a f · g + h)(x0)| < ǫ which means that the subalgebra {af · g +
h; g ∈ P, h ∈ τ, a ∈ IR} satisfies (1.1). Hence: {af · g + h} ⊂ τ and
f · g ∈ τ.
Assume that f · g ∈ τ but f 6∈ τ and g 6∈ τ. Then, the subalge-
bra {af · g + h; a ∈ IR, g ∈ P, h ∈ τ} does not satisfy (1.1) and
infx∈X{|af(x) + h(x)|} > 0 for some h ∈ τ and a ∈ IR. Similarly,
infx∈X{|af(x) + h′(x)]vert} for some h′ ∈ τ and x ∈ IR. Therefore,
infx∈X{|(af(x)+h(x))(bg(x)+h′(x))|} > 0 contradicting (af +h)(bg+
h′) = (ab)f · g + af · h′ + bg · h + h · h′ ∈ τ, since τ is an ideal.

The above theorem implies that the family {N(f)}f∈P can be used
to generate a topology on µ(P ).

Theorem 1.7. 1. µ(P ) with the topology {N(α); α ∈ P} is com-

pact.

2. ιP : X → µ(P ) defined by ιP (x) = τx is continuous and ιP is

dense in µ(P ).
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3. If 1 ∈ P and P separates point, then ιP is one-to-one. Moreover,

if (α−1(IR − {0}))α∈P is a base of X , then ιP : X −→ ιP (x) is

homeomorphism.

Proof :

1. Assume µ(P ) = ∪s∈SN(αs) and µ(P ) − ∪s∈AN(αs) 6= 0 for each
finite subset A of S. Then {αs; s ∈ A} is a subset for some τA ∈
µ(P ) for all finite subsets A of S.

Let τ be the sub-algebra of P generated by {αs; s ∈ S}. Since
each element of τ is contained in τA, τ satisfies (1.1). Thus τ ⊂
τ ′ ∈ µ(P ) and τ ′ ∈ µ(P ) − ∪s∈SN(αs), a contradiction.

2. Since ı−1
P (N(α)) = α−1(R − {0}), so ıP is continuous. Suppose

α ∈ P and N(α) ∩ ı(X ) = ∅. Then α ∈ τx for all x ∈ X , which
means α ≡ 0. In such a case α ∈ τ for all τ ∈ µ(P ) and N(α) = ∅.
Thus ıP (x) is dense in µ(P ).

3. If 1 ∈ P, then all the constant functions belong to µ(P ), since P is
a subspace of C(X , IR). Now, P separates point, then ıP is injective.
So ı−1

P (N(α)) = α−1(IR − {0}) is equivalent to N(α) ∩ ıP (X ) =
ıP (α−1(R−{0})). Thus, if {α−1(R−{0})}α∈P is a base of X , then
ıP : X → ıP (X ) is an open map.

Theorem 1.8. Let p : [0, 1] → IR, p(x) 7→ x + |x|. Then there is a

sequence of polynomials belong to C([0, 1], IR) that converges uniformly

to p.

Proof :

Define the sequence (pn)n∈IN of polynomials as follows: Let p1(x) = x2.
Define recursively for each n ∈ IN :

pn+1(x) = x − (x − pn(x))(1 − pn(x)/2), x ∈ [−1, 1]

The sequence (pn)n∈IN is increasing for x > 0 and decreasing for x < 0.
Given 0 < ε < 1, then |p(x) − pn(x)| < ε for |x| < ε. If x > ε,
then (x − pn+1) = (x − pn(x))(1 − pn(x)/2) ≤ (x − pn(x))(1 − ε2/2),
since p1(x) = x2 ≤ pn(x). Also, for x < −ε we have pn+1(x) =
pn(x)(1 + (x − pn(x))/2) ≤ pn(x)(1 − ε/2) as x − pn(x) ≤ x ≤ −ε.
Thus, for n sufficiently large, |p(x) − pn(x)| < ε, for all x ∈ [−1, 1].

The previous theorem purpose is as an auxilliary steps to prove one
part of the following ’small’ theorem. The following theorem actually
is a special case of Theorem 1.7.

Theorem 1.9. 1. ip : X −→ µ(P ) is a homeomorphism for any

compact Haussdorf space X and P = C(X , IR).
2. ip : [a, b] −→ µ(P ) is a homeomorphism for any closed subalgebra

P of C([a, b], IR) containing all the polynomials.

Proof :
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1. By Theorem (1.4), iP is onto and iP : X −→ iP = µ(P ) is home-
omorphism by Theorem (1.7).

2. Since [a,b] and [-1,1] is homeomorphism by linear function, we may
assume a = −1 and b = 1. Hence it is suffices to show, by Theorem
(1.7), that for any (c, d) there is α ∈ P with α−1(IR − {0}) =
(c, d)∩ [−1, 1]. Given c and d, the map α(x) = p(x− c) · p(x− d),
where p is function constructed in the previous theorem, satisfies
α−1(IR − {0}) = (c, d) ∩ [−1, 1].

Now we turn to examining functorial property of our construction.
Let f : X −→ Y be a given map. Given P a subalgebra of C(X , IR) and
Q a subalgebra of C(X , IR) such that for any g ∈ Q the composition

g ◦f belongs to P, we would like to construct a map f̂ : µ(P ) −→ µ(Q)

such that f ◦ ip = iQ ◦ f. The most natural choice for f̂(τ) is τ ′ = {g ∈
Q; g ◦ f ∈ τ}. To show that τ ′ is maximal is a bit difficult and only be
able to show it for the case Y is compact.

Theorem 1.10. Let f : X −→ Y be a map, P is a subalgebra of

C(X , IR) and Q a subalgebra of C(Y , IR) such that for any g ∈ Q the

composition g ◦ f belongs to P.

1. If for every τ ∈ µ(P ) the set τ ′ := {g ∈ Q; g ◦ f ∈ τ} belongs

to µ(Q), the map f̂ : µ(P ) −→ µ(Q) defined by f̂(τ) = τ ′ is

continuous and the diagram:

X
−→

f Y
↓ iP ↓ iQ

µ(P )
−→

f̂ µ(Q)
is commutative.

2. If Y is a compact Hausdorff space and Q = C(Y , IR) or Y = [a, b]
and Q is the closure of polynomials on [a, b], then for every τ ∈
µ(P ) the set τ ′ = {g ∈ Q; g ◦ f ∈ τ} equals τy =∈ µ(Q) for some

y ∈ Y .

Proof :

1. In this case f̂−1(N(α)) = N(α ◦ f) for any d ∈ Q, so f̂ is contin-
uous.
Also, if x ∈ X,

(f̂ ◦ iP )(x) = f̂(τx)

= τf(x)

= (iQ ◦ f)(x)

2. Given τ we will show that there is a unique y ∈ Y so that τ ′ ∈ τy.
Suppose that for each y ∈ Y there is a unique αy ∈ Q such
that αy(y) 6= 0 and αy = τ ′. Choose a neighbourhood Uy of y in
α−1(IR−{0}). By compactness of Y , there exist finitely many finc-
tions α1, · · · , αm ∈ τ ′ (by selecting finite subcovering of (Uy)y∈Y),



6 AGAH D. GARNADI

with
∑m

i=1 α2
i > ε > 0, which contradicts the facts that τ satisfies

condition (1.1). Suppose y 6= z and τ ′ ⊂ τy, τ
′ ⊂ τz. Select g, g′

member of Q such that g · g′ = 0 and g(y) 6= 0, g′(z) 6= 0. Hence
g 6∈ iy and g′ 6∈ τz. Since τ is prime ideal, then g ◦ f ∈ τ or
g′ ◦ f ∈ τ ; and g ∈ τ ′ or g′ ∈ τ ′, a contradiction.
Now it left to shows that τy ⊂ τ ′. Suppose U is open neighbour-
hood V of y and g|U ≡ 0, g ∈ µ(Q). Select a neighbourhood of V
of y in U with V̄ ⊂ U . Let h ∈ Q with h(y) = 1 and h|Y − V ≡ 0.
Since h · g = 0, and by τ is prime ideal, h ◦ f ∈ τ or g ◦ f ∈ τ. In
view of h(y) = 1 and τ ′ ⊂ τy, we have g ◦ f dna g ∈ τ ′. Lastly,
since for any g ∈ Q, g(y) = 0 is a limit of gn ∈ Q,n ≥ 1, with
each gn vanishing on some neighbourhood of Y . Thus, gn ∈ τ ′. If
g ◦ f 6∈ τ, there is h ∈ τ with infx∈X{|g ◦ f(x) + h(x)|} > ε. Select
gn such that |g − gn| ≤ ε2. Then infx∈X{|gn ◦ f(x) + h(x)|} ≥ ε2,
a contradiction.

Now we will establish the fact that Pf contains P for f = iP : X −→
µ(P ) provided P is closed and contains all the constant functions.

Corollary 1. Suppose P is a closed subalgebra of C(X , IR) containing
identity element.

1. For any α ∈ P, α : X −→ [a, b] there is α′ : µ(P ) −→ [a, b] with
α′ ◦ iP = α and N(α) = (α′)−1(R − {0}). In particular µ(P ) is
Haussdorf.

2. If α : X −→ Y is a map from X to a compact Haussdorf space
such that Pα is contained in P, then there is a unique map α′ :
µ(P ) −→ Y with α = α′ ◦ iP .

Proof :

Write Q = C(Y ,R) for the case (b) and put Q be the closure of all
polynomials for the case (a). By theorem (1.9), iQ is a homeomorphism.

1. Since P is an algebra containing constants function, g ◦ α ∈ P
for any polymials g. Hence g ◦ α ∈ P for any g ∈ Q, since P is
closed. By Theorem (1.10), there is a map α̂ : µ(P ) −→ µ(Q)
with iQ ◦ α = α̂ ◦ iP .

2. By theorem (1.10) construct a map α̂ : µ(P ) −→ µ(Q) with
iQ ◦ α = α̂ ◦ iP .
Write α′ = (iQ)−1 ◦ α. We will show that µ(P ) is Haussdorff.
Assume τ1 6= τ2 ∈ µ(P ) and choose α ∈ τ1 − τ2. Then τ ′

1 = {g ∈
Q; g ◦α ∈ τ1} does not contain idX . Thus α′(τ1) 6= α′(τ2), so µ(P )
is Haussdorff.

Next we claim that P contains Pf .

Theorem 1.11. Suppose P is a closed subalgebra of C(X , IR) contain-

ing 1. Then for any g : µ(P ) −→ IR the map g ◦ iP belongs to P.

Proof :

Let h ∈ P be a map. By corollary (1), there exist a unique map
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ĥ : µ(P ) −→ IR satisfying ĥ ◦ iP = h. We will show that {ĥ; h ∈ P} =
C(µ(P ), IR).
Suppose ε > 0 and g : µ(P ) −→ IR is continuous. Select for each y ∈
µ(P ) a neghbourhood Uy = N(αy) of y such that |g(z)− g(z′)| < ε for

y ∈ µ(P ). Select finitely many points y1, · · · , yk with
⋃k

i=1 = Y , where
Ui = Uy1

and αi = αyi
, for i ≤ k. Observe that |g(yi) − g ◦ iP (x)| < ε

for iP (x)Ui and αi(x) = 0 otherwise. Hence:

|
∑

(g(yi) − g ◦ iP (x) · αi(x))| < ε ·
∑

|αi(x)|, ∀x ∈ X .

If we can select the functions {αi}i in such a way that
∑

|αi| = 1 and
αi > 0, then the task will be done. Clearly, g′ =

∑

g(yi) · αi belongs
to P and :

|g′(x) − g ◦ iP (x)| = |
∑

(g(yi) − g ◦ iP (x)) · α(x)|ε
∑

|αi(x)| = ε.

By Theorem (1.6), we may replace each αi by α2
i , in view N(α2

i ) =

N(αi)∩N(αi) = N(αi). Since µ(P ) is compact, α = ( ˆ∑

αi) is bounded.

For any y ∈ µ(P ), note that α(y) 6= 0. Clearly, {h; ĥ(y) = 0} ⊂ N(αi)
for some i means α̂i(y) 6== 0. Hence α : µ(P ) −→ [a, b], where a > 0.
Note that the map r(x) = 1x, x ∈ [a, b], is the limit of polynomial:

1x = 1b ·
1

1 −
b − x

b

= 1b ·
∞

∑

k=1

(b − xb)n .

Consequently β = 1/(
∑

αi) ∈ P and N(β) = µ(P ). (i.e. µ(P ) =
N(1) = N(β) ∩ N(

∑

αi), so N(β) = µ(P ).)
Now, each αi can be replaced by β · αi in view of:

N(β · αi) = N(αi) ∩ N(β) = N(αi).

At last, we arrive to stating and proving the grand unification theo-

rem of the following.

Theorem 1.12 (The Grand Unification Theorem). Suppose P is a clo-

sed subalgebra of C(X , IR) containing identity 1.
Then there exist a compact Haussdorf space µ(P ) and a map iP : X −→
µ(P ) such that the function îP : C(µ(P ), IR) −→ C(X , IR) given by

îP (g) = g ◦ iP is injective and its image is P.
The space µ(P ) is unique in the following sense : for each map f :
X −→ Y with ¯f(X ) = Y being compact Haussdorf space and Pf = P,
there is a homeomorphism h : Y −→ µ(P ) with h ◦ f = iP .
Moreover, if f : X −→ Y is a map and Q is a closed subalgebra of

C(Y , IR) such that for any g ∈ Q the composition g ◦ f belongs to P

and 1 ∈ Q, then there is a unique map f̂ : µ(P ) −→ µ(Q) making the

diagram :
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X
−→

f Y
↓ iP ↓ iQ

µ(P )
−→

f̂ µ(Q)

commutative.

Proof :

By theorem (1) and theorem (1.11), PiP = P is established. If f :
X −→ Y is a map such that ¯f(X ) = Y being compact Haussdorff
space and Pf = P, then the map f ′ : µ(P ) −→ Y with f = f ′ ◦ iP must

be homeomorphism by corollary 1 part b. Clearly ˆ(f ′) : C(Y , IR) −→
C(µ(P ), IR) is an isomorphism of algebras, so f ′ must be surjective
(otherwise g ◦ f ′ = 0 for a nontrivial g : Y −→ [0, 1] ), and it must be
injective (otherwise a pair of points in µ(P ) could not be separated by
a real-valued function).
Let f : X −→ Y be a map and Q is closed subalgebra of C(YIR) such
that for any g ∈ Q the composition g ◦ f belongs to P and 1 ∈ Q.
Consider α = iQ ◦ f : X −→ µ(Q). If g : µ(Q) −→ IR, then g ◦ iQ ∈ Q
by theorem (1.11), so g ◦ α ∈ P. By corollary 1 [art b, there exist a

unique map f̂ : µ(P ) −→ µ(Q) such that f̂ ◦iP = α. Then the diagram:

X
−→

f Y
↓ iP ↓ iQ

µ(P )
−→

f̂ µ(Q)

is commutative.

2. The Four Major Theorems

This section, as stated in introductory notes, only stating and prov-
ing The Stone-Weierstrass Theorem, The Stone-Ĉech compactification
theorem, The Tietze-Urysohn extension Theorem, and the Tychonoff
Theorem as consequences of the grand unification theorem.

Theorem 2.1 (Stone Weierstrass Theorem). Suppose X is a compact

Haussdorf space.

If P is a closed subalgebra of C(X , IR) which contains 1 and separates

the points of X , then P = C(X , IR).

Proof :

The map iP : X −→ µ(P ) is surjective (since its image is dense in
µ(P )) and is injective (otherwise: f(x) = f(y) for all f ∈ P ans som
x 6= y). Thus iP is homeomorphism and P = C(X , IR).

Theorem 2.2 (Stone-Ĉech Compactification Theorem). Suppose X is

a completely regular space.

Then there is a compact Haussdorf space β X containing X as a dense

set such that any map f : X −→ Y from X to a compact Haussdorf

space Y extends over β X .
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Proof :

Write β X = µ(C(X , IR)). By theorem 1.7 , X may considered as subset
of β X . Then ¯f(X ) = µ(P ) (up to homeomorphism) for some P ⊂
C(X , IR) so there is a map from β X to µ(P ) extending f.

Theorem 2.3 (Tietze-Urysohn). If A is a closed subset of a normal

space X , then any continuous function f : A −→ IR extends over X .

Proof :

The proof is split into two cases, first in the case of X being compact,
and secondly X is not compact.

In the case of X being compact, this exactly means P = {f ◦ ıf :
X → IR} equals C(A, IR), where ı : A → IR is inclusion map. By Stone-
Wierstrass theorem, one gets P̄ = C(A, IR), so it suffices to show that
P is closed.

Suppose fn ◦ ı converges uniformly to f. We may assume |fn+1(a)−
fn(a)| < 2−n for all a ∈ A. Let rn : IR → [−2−n, 2−n] defined by :

rn(x) =







x, −2−n ≤ x ≤ 2−n

−2−n, −2−n > x
2−n, 2−n < x

Then gn = f1+
∑

k = 1nrk(fk+1−fk) converges uniformly to g : X → IR
with g(a) = f(a) for a ∈ A.

Note that ı̂ : βA −→ βX is injective. Let x 6= y in βA, select two
disjoint closed set C,D in βA with x ∈ C◦ and y ∈ β. Let g : X → [0, 1]
be a map with g(C ∩ A) = {0} and g(D ∩ A) = {1}. There is an
extension g′ : X → [0, 1] of g and an extension g′′ : X → [0, 1] of g|A.
Since A is dense in βA, we have g′′ = g′ ◦ ı̂ and ı̂(x) 6= ı̂(y).

If X is not compact and f : A → IR is bounded we extend f over
βA = µ(C(A, IR)). By the previous part, we can extend over βX and
the restriction of this extension to X is the desired extension of f.

If f : A → IR is not bounded, we identify IR with (−1, 1) and chose
an extension g : X → [−1, 1] of f. Then consider α : X → [0, 1] with
α(g−1({−1, 1})) ⊂ {0} and α(A) = {1}. Define f ′(x) = α(x) · g(x).

Theorem 2.4 (Tychonoff Theorem). If {Xi}I is a family of compact

Haussdorf spaces, then their cartesian product
∏

I Xi is compact Hauss-

dorf.

Proof :

Put X =
∏

I Xi and P = C(X , IR). For each i ∈ I there is a map
gi : µ(P ) −→ Xi such that gi ◦ iP =

∏

i is the projection
∏

i Xi −→ Xi.
Then g =

∏

I gi : µ(P ) −→ X is continuous and g ◦ iP = idX . Since
iP ◦ g is identity on a dense subset iP (X ) of µ(P ), iP ◦ g = id and g is
homeomorphism.
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