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Abstract

It is well-known that in control theory the stability region of continuous-
time system is laid in the left half plane of complex space, while that
of discrete-time system is dwelled inside a unit circle. The former fact
might be shown by exploiting the Laplace transform and the later by
utilizing the corresponding zeta transform. In this paper we revealed the
connectivity of both regions by employing Md6bius transform. We also
used the same transform to derive continuous/discrete-time counterpart
of several existing results, including Bode integral and Poisson-Jensen
formula. We then demonstrated their unification property by using
delta transform. Some numerical examples were provided to verify our
results.

Keywords: continuous-discrete unification, Md6bius transform, delta
transform, stability

1 INTRODUCTION

In control theory, some results for continuous-time and discrete-time such as
regions of stability, expressions for minimum tracking error and energy regu-
lation are derived independently. It is well-known that the stability region of
continuous-time system is laid in the left hand side of imaginary axis in com-
plex space, while that of discrete-time system is located inside a unit circle. In
this paper, instead of using rigorous derivation we aim to utilize the strength
of the Mobius transform to obtain the counterpart of existing results, which
cover the Bode integral and Poisson-Jensen formula.

While discrete system is obtained from continuous-time system by sam-
pling, expressions in continuous and discrete domains are not quite clear. This
is because the underlying continuous domain descriptions cannot be obtained
by setting sampling period to zero in the discrete domain approximations.
In optimal tracking error control problem, for instance, contribution of non-
minimum phase zeros for continuous and discrete-time systems are provided
in completely different ways, see [3, 7]. The delta operator has often been
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proven entailing many advantages in connecting discrete-time and continuous-
time systems, such as control synthesis [4], control design [5], estimation [9]
and filtering [11]. We then provide the delta domain version of some existing
results.

2 REGION OF STABILITY

The most commonly used definitions of stability are based on the magnitude of
the system response in the steady state. A system is said to be (asymptotically)
stable if its response to any initial conditions decays to zero asymptotically in
the steady state, otherwise is said to be unstable. From the perspective of
the forced response of the system for a bounded input, a system is said to
be bounded-input and bounded-output (BIBO) stable if its response to any
bounded input remains bounded. This section reviews the region of stability
for continuous-time and discrete-time systems.

2.1 Continuous-time System

Consider a linear continuous-time system given by an initial value problem of
n-th order differential equation:

a0 = 3 b (0), 100 = u(0) =0, )

j=0

where y(t) and u(t) respectively are the output and input of the system, a; (i =
0,...,n) and b; (j = 0,...,m) are real coefficients, and @, and b, are non-
zeros. Note that in (1), 3 denotes the i-th derivative of y with respect to
time t. System (1) can be expressed in frequency domain, i.e., s-domain, by

Laplace transform
Z a;s'Y (s) = Z b;s'U(s),
i=0 5=0

where Y (s) := L{y(t)} and U(s) := L{u(t)} respectively denote the Laplace
transform of y(¢) and u(t). The system possesses the following transfer function
by S™ 4 b1 8™+ .+ bis + by

H(s) = 2
() ApS" 4+ ap_18" L+ ..+ ays+agp’ (2)

where H(s) represents the transfer function between input U(s) and output
Y(s), i.e., Y(s) = H(s)U(s). If it is assumed that H has no zeros and poles
in the same location, then we may write (2) as

c(s—z1)(s—22) - (s— 2zm)

B = ) 5 —pn) ®)
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where z; (j =1,...,m) and p; (i = 1,...,n) are zeros and poles of H, respec-
tively, and c is a real constant. As we assume that n > m, (3) can be written
in term of partial fraction decomposition as follows,

His) =y — (4)

Y
S J— .
i=1 pi

where ¢; = lim,_,,,. (s —p;)H(s), i =1,...,n.

By considering an impulse input function, i.e., U(s) = 1 or equivalently
u(t) = (t), then the time domain solution for (1) can be obtained by applying
the inverse Laplace transform:

y<t>=gz-1{ Loy 5)

S —Di P}

It can easily be seen from (5) that system (1) is (asymptotically) stable, i.e.,
lim; , y(t) = 0, if and only if Rep; < 0 for all i = 1,...,n. In other words,
the stability region of continuous-time system is laid in the left half plane of
complex space.

2.2 Discrete-time System
Consider a linear discrete-time system represented by a single n-th order dif-
ference equation relating the output y to the input u:

n m

S aylk+1) = byulk + ). (6)

=0 Jj=0

for k =0,1,... and y(i) = u(j) = 0. Zeta transform provides the z-domain
version of system (6), i.e.,

2”: a;2'Y (2) = Zm: b2 U (z),
i=0 J=0

where Y (z) := Z{y(k)} and U(z) := Z{u(k)} respectively denote the zeta
transform of y(k) and u(k). Thus we have the following transfer function

mem + bm_lzm*I + ...+ bz + bo
A2 + Gy 12"V az+ag

H(z) = (7)

Note that if all poles of H(z) lie inside the unit circle {z : |z| < 1}, (7) can be
rewritten as a power series

H(z) = Zciz*i. (8)
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By applying the inverse zeta transform we have

= Z cou(k — ). (9)

Let |u(i)| < M for all i and C' =37, ¢;. Then,

k

> ciulk

1=0

k
Z leillu(k —4)| < MC

=0

ly(k)| =

for each k = 0,1,.... Therefore the linear system (6) is stable. The proof of
the converse can be found in [6]. As we completed the proof, it is shown that
the stability region of a linear discrete-time system lies inside the unit circle.

3 MOBIUS TRANSFORM

It has been revealed in the previous section that the region of stability of
continuous-time system is the left half plane of complex space, while that
of discrete-time system is the interior of a unit circle. In this section we will
utilize the Mobius transform [2] to show the interconnection between these two
regions. In particular, we demonstrate that the region of stability of discrete
domain can be asserted by Mdébius transforming that of continuous domain.

Definition 1 (Méobius Transform). Transformation
az+b
cz+d

where a, b, ¢ and d are complex-valued constants, is called Mobius transform
from variable z to variable s.

s=M(z):= ad — bc # 0, (10)

When ¢ # 0, equation (10) can be written

~a bc—ad 1

T ¢ cz+d
from which we can see that condition ad — bc # 0 ensures that we do not have
a constant function. If we assign M(oc) = oo for ¢ = 0, and M(o0) = ¢ and
M(—%) = oo for ¢ # 0, then M&bius transform (10) is certainly a bijective
mapping of the extended z-domain onto the extended s-domain. When a given
point s is the image of some point z under transformation (10), the point z is

retrieved by its inverse

z=M71(s) = _d8+b, ad — be # 0. (11)

CS —a

We can verify that the inverse function (11) is also a bijective mapping by using
the definition M~!(c0) = oo for ¢ = 0, and M~ (%) = 0o and M~*(c0) = —¢
for ¢ # 0.
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3.1 Region of Stability Mapping

In Section 2 the regions of stability for continuous-time and discrete-time sys-
tems were derived separately by employing the Laplace and zeta transforms,
respectively. In this part we will show that the region of stability for discrete-
time system can be obtained by Md&bius transforming that for continuous-time
system. To facilitate our analysis, for C the complex space we define the
following sets: C~ := {s € C : Res < 0}, C* := {s € C : Res > 0},

={ze€C:|z]<1},D°:={2€C:|z] >1} and D°:= {2 € C: |2| > 1}.

For the analysis we consider a special case of Mobius transform where
a=c=d=1and b= —1, that is

z—1

- , 12
S= 7 (12)

Let s = a+ 703, j = +v/—1, is an arbitrary point in C~, that is @ < 0. Then we
have
20 < —2a & (a+1)*+ 52 < (a— 1)+ 5~

The above is nothing but the modulo of complex numbers
lla+ 1) +50| <|[(a—1)+j8|<|s+ 1| <|s—1].

By applying (12) to above inequality we have

z—1 z—1 2z -2
+1| < -
z+1 z+ z4+1 z+1
& |zl < L

It is shown that s € C~ corresponds to z € D, which reveals the interconnection
between region of stability in s-domain and its counterpart in z-domain.

3.2 Other Continuous-Discrete Relationships

Now we further exploit the use of special Mobius transform (12) to unveil the
counterpart of existing continuous-time or discrete-time results, which covers
Bode integral and Poisson-Jensen formula.

Theorem 2 (Bode integral in s-domain). Let g(s) be an analytic function in
C*. Denote that g(jw) = g1(w) + jga(w) and g(s) = ¢(3), i.e., g is conjugate

symmetric. Then,
L (% gi(w) — 91(0)

PROOF. See [10, pp. 53].

The discrete-time counterpart of Bode integral is given as follows.
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Theorem 3 (Bode integral in z-domain). Let f(z) be an analytic function in

D°. Denote that (') = f1(0) + jf2(0) and f(2) = f(Z), i.e., f is conjugate

symmetric. Then,

1 [™ () = £(0)
2f'(1) = = — = df. 14
F) 7r/_7r 1 —cosé (14)
PrROOF. From (12) we have the following mappings: {s = 0} — {z = 1} and
{s = jw} = {z = ¢/}, where w = tan $6. Thus we also have dw = ——; df
and {w = +oo} = {# = +7}. Since f(2) = g(£7) we obtain ¢'(0) = 2f'(1).

Equation (14) is claimed from (13) by substitution.

Theorem 4 (Poisson-Jensen formula in z-domain). Let f is analytic in D°
and d; (i = 1,...,n4) be the zeros of f in D°, counting their multiplicities. If
z €D and f(z) # 0, then

s = £ [ re [ noslse ao

zel? — 1

e 1—6712
_ 1 15
e (5)

ProOOF. The Poisson-Jensen formula can be found in many standard books
on complex analysis. See for instance [1].

The continuous-time counterpart of Poisson-Jensen formula is provided as
follows.

Theorem 5 (Poisson-Jensen formula in s-domain). Let g is analytic in C*

and ¢; (i = 1,...,n.) be the zeros of g in C*, counting their multiplicities. If
s € Ct and g(s) # 0, then
loglg(s)] = —/ Re { +39’5] oglg(w)| .
TJo s+jw | 14 w?

PROOF. Perform transformation (12) over Theorem 4 to prove it.

4 DELTA TRANSFORM

A book that provides a comprehensive account on delta operator is [8]. The
delta operator ¢ is define as the following forward difference

qg—1
&1~
T )
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where ¢ is the forward shift operator commonly used in discrete-time case and
T > 0 is the sampling time. For any sequence z(k), k = 1,2, ..., delta operator

gives
(¢ —Vx(k) _ x(k+1)—x(k)
(k) T T
By taking the zeta transform of above equation we obtain
—1
5X(2) = ZT X(2).

We may say that in z-plane the delta operator will translate a point z € C one
unit to the left and then scale it by factor of % Later, the variable 0 is used
as the delta operator variable and is analogous to the Laplace variable s for
continuous-time systems and the zeta transform variable z for discrete-time
systems. We then obtain the relationship between variable z and variable ¢ as

follows,
5= z—1

— T+ 1. (17)

For any sequence x(k) we define its delta transform by
D{x(k)} = Xr(8) := TZ TS+ 1)~

Now we ready to present the (5—d0ma1n counterparts of previous theorems.
For time sampling T" we define the following sets: Dp := {6 € C: [T6+1] < 1},
DS :={0eC:|Té+1|>1}and DS :={6 € C: |T5+ 1| > 1}.

Theorem 6 (Bode integral in 6-domain). Let h be an analytic function in
DS. Denote that h(eU<T=D/T) = hy(wT) + jha(wT) and h(5) = h(J), i.e., h is
conjugate symmetric. Then,
20'(0) T /”/T hy(wT) — hy(0)
T
ProOF. Consider the relationship h(0) = f(7'9 + 1), where f is defined in

Theorem 3. Since f is analytic in D°, then h is analytic in DS.. From (17) we can
easily verify that h'(0) = Tf'(1), df = T'dw and {z = €/} s {§ = UT-1/T}

Theorem 7 (Poisson-Jensen formula in §-domain). Let h is analytic in D5

dw. 18
—wr 1 —coswT “ (18)

and o; (i=1,...,n5) be the zeros of h in D, counting their multiplicities. If
d € DS and h( ) # 0, then
log |h(0)] =

T /“/T (T6 + 1)e’T 4 1
0 (T6 + 1)eiwT — 1

} log [h(eY=T=D/T)| du
m
Téal +0,+ 5‘

— Zlog

(19)
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5 NUMERICAL EXAMPLE

In this section we provide a simple illustrative example to verify our result and
to show the unification property between d-domain and s-domain results.

5.1 Verification

To verify the result presented in Theorem 3 we consider a function f defined
in z-domain as follows,

3z+1
= -1 1. 20
fe =270 l<ps< (20

Since pole p lies inside the unit circle, indeed f is analytic in D¢ and it can be
written as f(e?) = f1(0) + j fo(6), where

3—p+(1—3p)cosd
p? —2pcosf + 1
(14 3p)sind
Cp2—2pcosf+1°

Y

Further, the LHS of (14) is given by

23p+1)

2f'(1) = — : 21
Whereas, for the RHS we have
1 [ —
m)_. 1—cosf
x 3—p+(1-3p)cos® 4
_ l/ p2—2pcosf+1 1-p do
T J)_x 1 —cosf
(p+1)(3Bp+1) /7r de (22)
w(p—1) . p*—2pcosf+1

Figure 1 shows that numerical calculation of LHS in (21) and that of RHS in
(22) for varying stable pole p are coinciding.
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Figure 1: Bode integral in z-domain

5.2 Unification
Since g(s) = f(1£2), from (20) we obtain

44 2s
- , 23
9(s) Q+p)s+1—p (23)
from which we also have
23p+1)
0y = — P
In the §-domain, from the relationship h(d) = f(T6 + 1) we have
370 +4
h(0) = —— 24
5= et (24)
and thus STy T
B(0) = P

(1-p)*
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Therefore, the unification property of Theorems 2, 3 and 6 is unveiled by fact
that

. 21'(0) , 3Ip+T 3p+1 0)

im = lim — =— =

750 T 7-0 T(1— p)? (1 —p)? T

which show that the LHS of (18) converges to that of (13) as the sampling
time 7" decreases.

6 CONCLUDING REMARK

It has been shown that Mdobius transform can be utilized to derive counterpart
result without involving any rigorous derivation. The delta transform, which
takes a time sampling into account, can be used to show the unification prop-
erty between continuous and discrete results. The approach describes in this
paper can then be exploited to derive many more counterpart expressions.
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