Keanekaragaman Karakter Galur-Galur Bakteri Penyebab Busuk Hitam (Xanthomonas campestris pv. campestris) pada Kubis terhadap Campuran Bahan Aktif Azoksistrobin dan Difenokonazol

  • Af'idzatuttama Institut Pertanian Bogor
  • Abdjad Asih Nawangsih Department of Plant Protection, IPB University
  • Giyanto Department of Plant Protection, IPB University
Keywords: exopolysaccharide, in silico, restriction enzyme

Abstract

Character Diversity of Black Rot Bacterial Strains (Xanthomonas campestris pv. campestris) on Cabbage against Mixture of Active Ingredients Azoxystrobin and Diphenoconazole

Xanthomonas campestris pv. campestris is a bacterium that causes black rot on cabbage. Farmers still rely on the synthetic pesticides azoxystrobin and difenoconazole to control diseases in cabbage which are feared to have an impact on the diversity of X. campestris pv. campestris. The objective of the research was to obtain genetic and phenotypic diversity data on X. campestris pv. campestris, as well as obtaining data on the resistance response of these bacterial isolates to a mixture of the active ingredients azoxystrobin and difenoconazole. The study consisted of five stages (1) sampling on land with black rot symptoms; (2) isolation of bacteria using tissue implant technique; (3) selection of isolates by testing properties of Gram, hypersensitivity, starch hydrolysis, and pathogenicity; (4) identification using specific and universal 16S rRNA primers; and (5) analysis of genotypic diversity by in silico RFLP method and phenotypic diversity by measuring EPS weight. The results of molecular characterization and identification obtained five isolates of X. campestris pv. campestris (CLT01, CDA08, SDA02, SDA22, and SDA26). The results of the analysis of genotypic diversity showed that the five isolates had genetic diversity based on the cutting of the 16S rRNA gene DNA fragment, while phenotypically indicated different Inhibition concentration (IC) values. SDA22 isolate had the highest IC50 value and different genetic diversity compared to other X. campestris pv. campestris. The use of synthetic pesticides azoxystrobin and difenoconazole continuously for a long time is feared to have an impact on pathogenic microbes such as X. campestris pv. campestris. So that other control alternatives are needed so that there is no resistance to these pathogenic microbes.

Downloads

Download data is not yet available.

References

Bacmaga M, Kucharski J, Wyszkowska J. 2015. Microbial and enzymatic aztivity of soil contaminatedwith azoxystrobin. Enviromental Monitoring and Assesment. 187:615–630. DOI: https://doi.org/10.1007/s10661-015-4827-5.

Bartlet DW, Clough JM, Godfrey CRA, Godwin JR, Hall AA, Heaney SP, Maund SJ.2001. Understanding the strobilurin fungicides. Pesticide Outlook. 12(4):143–148. DOI: https://doi.org/10.1039/b106300f.

Berg T, Tesoriero L, Hailstones DL. 2006. A multiple realtime PCR assay for detection of Xanthomonas campestris from brassicas. Letters in Applied Microbiology. 42(6):624–630. DOI: https://doi.org/10.1111/j.1472-765X.2006.01887.x.

[BPS] Badan Pusat Statistik. 2018. Struktur Ongkos Usaha Tanaman Kubis Per Hektar Per Musim Tanam di Indonesia. https://www.bps.go.id [diakses 03 Nov 2022].

[BPS Jawa Barat] Badan Pusat Statistik Provinsi Jawa Barat. 2021. Provinsi Jawa Barat dalam angka 2021. https://jabar.bps.go.id [diakses 03 Nov 2022].

[BPTP] Balai Pengkajian Teknologi Pertanian. 2019. Teknologi Budidaya Kubis (Brassica oleracea L.) Dataran Rendah. http://repository.pertanian.go.id [diakses 28 September 2022].

[DITJEN PSP] Direktorat Jenderal Prasarana dan Sarana Pertanian. 2016. Pestisida Pertanian dan Kehutanan. https://psp.pertanian.go.id [diakses 20 September 2022].

Darajat YM. 2014. Perbandingan pola penggunaan pestisida pada petani sayuran dan petani tanaman hias di Kecamatan Cipanas, Kabupaten Cianjur [skripsi]. Bogor (ID): IPB University.

[EPA] Environmental Protection Agency. 2021. Center for Food Safety. Washington DC: Office of Pesticide Programs.

[FRAC] Fungicide Resistance Action Committe. 2018. FRAC Code List©*2018: Fungicides sorted by mode of action (including FRAC Codenum bering. http: //www.frac.info/docs/default-source/publications/fr [diakses 15 Sept 2022].

Frank JA, Reich CI, Sharma S, Weisbaun JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification ofbacterial 16S rRNA genes. Applied and Environmental Microbiology Journal. 74(8):2461–2470. DOI: https://doi.org/10.1128/AEM.02272-07.

Gusfi V. 2002. Persepsi petani sayuran di Cipanas terhadap insektisida sintetis dan botani [skripsi]. Bogor (ID): IPB University.

Naqvi SF, Ul-Haq MI, Khan MA, Tahir MI, Ali Z, Rehman HM. 2013. Morphological and biochemical characterization of Xanthomonas campestris (pammel) Dawson pv. sesami and it’s management by bacterial antagonists. Pakistan Journal of Agricultural Research. 50(2):229–235.

Nugroho A. 2012. Eksplorasi bakteriofage virulen terhadap Xanthomonas campestris pv. campestris asal Kopeng untuk mengendalikan busuk hitam kubis [skripsi]. Surakarta (ID): Universitas Sebelas Maret.

Ozturk S, Aslim B. 2010. Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environmental Science and Pollution Research.17:595–602. DOI: https://doi.org/10.1007/s11356-009-0233-2.

Panjaitan D, Suada I, Sritamin M. 2014. Uji keefektifan ekstrak beberapa biji tanaman untuk menghambat pertumbuhan bakteri bercak daun (Xanthomonas campestris) pada tanaman tomat. Agroekoteknologi Tropika. 3(2):89–96.

Parida I, Damayanti TA, Giyanto. 2016. Isolasi, seleksi, dan identifikasi bakteri endofit sebagai agens penginduksi ketahanan tanaman padi terhadap penyakit hawar daun bakteri. Jurnal Fitopatologi Indonesia. 12(6):199–208. DOI: https://doi.org/10.14692/jfi.12.6.199.

Putrie RFA, Wahyudi AT, Nawangsih AA, Husen E. 2013. Screening of rhizobacteria for plant growth promotion and their tolerance to drought stress. Microbiology Indonesia. 25;7(3):94–104. DOI: https://doi.org/10.5454/mi.7.3.2.

Schaad NW, Jones JB, Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Ed ke-3. St. Paul (MN): American Phytopatological Society.

Sambrook J, Russell D. 2001. Moleculer Cloning: A Laboratory Manual. New York (NY): Cold Spring Harbor Laboratory Press.

Vicenta JG, Holub EB. 2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Moleculer Plant Pathology. 14(1):2–18. DOI: https://doi.org/10.1111/j.1364-3703.2012.00833.x.

Wang F, Li X, Zhu L, Du Z, Zhang C, Wang J, Lv D. 2018. Responses of soil microorganisms and enzymatic activities to azoxystrobin in Cambisol. Journal Environmental Study. 27(6):2775–2783. DOI: https://doi.org/10.15244/pjoes/81086.

Wanger A, Chavez V, Huang RSP, Wahed A, Actor JK, Dasgupta A. 2017. Microbiology and Molecular Diagnosis in Pathology. Texas (US): Elsevier.

Zhue Y, Damicone JP, Demezas DH, Bender CL. 2000. Bacterial leaf spot diseases of leafy crucifers in Oklahoma caused by pathovars of Xanthomonas campestris. Plant Disease. 84:1008–1014. DOI: https://doi.org/10.1094/PDIS.2000.84.9.1008.

Published
2023-03-30
How to Cite
Af’idzatuttama, NawangsihA. A., & Giyanto. (2023). Keanekaragaman Karakter Galur-Galur Bakteri Penyebab Busuk Hitam (Xanthomonas campestris pv. campestris) pada Kubis terhadap Campuran Bahan Aktif Azoksistrobin dan Difenokonazol. Jurnal Fitopatologi Indonesia, 19(2), 45-56. https://doi.org/10.14692/jfi.19.2.45-56
Section
Articles