Asap Cair Sebagai Pemacu Pertumbuhan dan Ketahanan Tanaman Pisang terhadap Ralstonia syzygii subsp. celebesensis

  • Muhammad Evan Nurrahmawan IPB University
  • Giyanto Department of Plant Protection, IPB University
  • Abdjad Asih Nawangsih Department of Plant Protection, IPB University
  • Erina Sulistiani Southeast Asian Regional Centre for Tropical Biology
Kata Kunci: asam pyroligneous, penyakit darah pisang, peroksidase, polifenol oksidase, priming

Abstrak

Bibit pisang hasil kultur jaringan diketahui rentan terhadap cekaman pada awal pertumbuhan di lapangan. Pra-pengondisian bibit menggunakan agens priming dilaporkan meningkatkan pertumbuhan dan ketahanan tanaman. Asap cair tempurung kelapa dilaporkan mampu memacu pertumbuhan dan menginduksi ketahanan tanaman. Penelitian ini bertujuan mendapatkan informasi pengaruh asap cair asal tempurung kelapa terhadap pertumbuhan dan aktivitas enzim ketahanan pada plantlet pisang Cavendish pada fase induksi perakaran serta penekanan R. syzygii subsp. celebesensis secara in vitro. Tahapan penelitian mencakup uji fitotoksisitas asap cair, analisis pertumbuhan plantlet, analisis aktivitas enzim peroksidase dan polifenol oksidase, isolasi R. syzygii subsp. celebesensis, dan uji toksisitas asap cair terhadap R. syzygii subsp. celebesensis secara in vitro. Hasil penelitian menunjukkan perlakuan asap cair pada konsentrasi ≥ 1.5% bersifat fitotoksik dengan gejala meliputi klorosis, nekrosis, terbentuk lendir dan kematian plantlet. Perlakuan asap cair pada konsentrasi ≤ 1% tidak bersifat fitotoksik, bahkan peningkatan pertumbuhan plantlet optimum ditunjukkan pada perlakuan asap cair 0.1%. Perlakuan asap cair menyebabkan peningkatan aktivitas enzim ketahanan pada 2, 4 dan 6 hari setelah tanam (HST), tetapi menurun pada 30 HST. Selain itu, asap cair bersifat antibakteri melalui terbentuknya zona hambat dan menyebabkan penurunan nilai kerapatan sel R. syzygii subsp. celebesensis. Penelitian ini menunjukkan potensi teknik priming untuk pengendalian penyakit darah pisang terutama pada bibit pisang hasil kultur jaringan.

Unduh

##plugins.generic.usageStats.noStats##

Referensi

Abidin A. 2018. Bakteri endofit penghasil AHL-laktonase asal tanaman pisang untuk pengendalian penyakit darah [tesis]. Bogor (ID): Institut Pertanian Bogor.

Ahadiyat YR, Rostaman R, Fauzi A. 2020. Pengaruh aplikasi asap cair tempurung kelapa dan pupuk NPK terhadap hama dan penyakit pada padi Gogo. J Penelit Pertan Tanam Pangan. 4(3):153–160. DOI: https://doi.org/10.21082/jpptp.v4n3.2020.p153-160.

Ahmed OB, Dablool AS. 2017. Quality improvement of the DNA extracted by boiling method in Gram negative bacteria. Int. J. Bioassays 6(4):5349. DOI: https://doi.org/10.21746/ijbio.2017.04.004.

Aisyah I, Giyanto, Sinaga MS, Nawangsih AA, Pari G. 2018a. Uji in vitro asap cair terhadap Ralstonia syzygii subsp. celebesensis penyebab penyakit darah pada pisang. J Fitopatol Indones. 14(4):145–151. DOI: https://doi.org/10.14692/jfi.14.4.145.

Aisyah I, Sinaga MS, Nawangsih AA, Giyanto, Pari G. 2018b. Utilization of liquid smoke to suppress blood diseases on bananas and its effects on the plant growth. Agrivita J Agric Sci. 40(3):453–460. DOI: https://doi.org/10.17503/agrivita.v40i3.1390.

Baccelli I, Mauch-Mani B. 2016. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Mol. Biol. 91(6):703–711. DOI: https://doi.org/10.1007/S11103-015-0406-Y.

Bednarek PT, Orłowska R. 2019. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tissue Organ Cult. 140(2):245–257. DOI: https://doi.org/10.1007/S11240-019-01724-1.

Cahyaniati C, Mortensen N, Marthur S. 1997. Bacterial Wilt of Banana in Indonesia. Jakarta (ID): Departemen Pertanian Indonesia.

Cappuccino JG, Sherman N. 2014. Microbiology: A Laboratory Manual. Ed ke-10. New York (USA): Pearson Education, Inc.

Chen YH, Li YF, Wei H, Li XX, Zheng HT, Dong XY, Xu TF, Meng JF. 2020. Inhibition efficiency of wood vinegar on grey mould of table grapes. Food Biosci. 38:1–8. DOI: https://doi.org/10.1016/j.fbio.2020.100755.

Cheng J, Hu SC, Kang K, Li XM, Geng ZC, Zhu MQ. 2021. The effects of pyrolysis temperature and storage time on the compositions and properties of the pyroligneous acids generated from cotton stalk based on a polygeneration process. Ind Crops Prod. 161:1–11. DOI: https://doi.org/10.1016/j.indcrop.2020.113226.

Cho YK, Ahn HK. 1999. Purification and characterization of polyphenol oxidase from potato: I. purification and properties. J Food Biochem. 23(6):577–592. DOI: https://doi.org/10.1111/j.1745-4514.1999.tb00587.x.

Conrath U. 2009. Priming of induced plant defense responses. Adv Bot Res. 513:61–395. DOI: https://doi.org/10.1016/S0065-2296(09)51009-9.

de Souza Silva SI, Pimenta AS, de Oliveira Miranda N, Lourenço YBC, de Souza EC. 2020. Wood vinegar inhibits emergence and initial growth of Leucaena (Leucaena leucocephala /Lam./ de Wit) seedlings. Agric Conspec Sci. 85(2):153–158.

de Tunes LM, Avelar SAG, Barros ACSA, Pedroso DC, Muniz MFB, de Menezes NL. 2012. Critical levels of organic acids on seed germination and seedling growth of wheat. Rev Bras Sementes. 34(3):366–372. DOI: https://doi.org/10.1590/S0101-31222012000300002.

Drenth A, Ray J, Subandiyah S. 2020. Reversing The Impact of Banana Blood Disease in Indonesia. Brisbane (AU): APBSF Project Final Report PBSF016.

Gulzar A, Siddiqui M, Bi S. 2016. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma. 253:1211–1221. DOI: https://doi.org/10.1007/s00709-015-0862-x.

Hadiwiyono. 2011. Blood bacterial wilt disease of banana: the distribution of pathogen in infected plant, symptoms, and potentiality of diseased tissues as source of infective inoculums. Nusant Biosci. 3(3):112–117. DOI: https://doi.org/10.13057/nusbiosci/n030307.

Hermanto C, Eliza E, Emilda D. 2013. Bunch management of banana to control blood disease. Australas Plant Pathol. 42(6):653–658. DOI: https://doi.org/10.1007/s13313-013-0248-5.

Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, et al.. 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews. 91(4):1118–1133. DOI: https://doi.org/10.1111/brv.12215.

Jeyanthi V, Velusamy P, Kumar GV, Kiruba K. 2021. Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 dan Staphylococcus auerus MTCC 740. Heliyon. 7(5):1–7. DOI: https://doi.org/10.1016/j.heliyon.2021.e07021.

Kamran M, Khan AL, Ali L, Hussain J, Waqas M, Al-Harrasi A, Imran QM, Kim YH, Kang SM, Yun BW, et al.. 2017. Hydroquinone: A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce. Front Chem. 5:30. DOI: https://doi.org/10.3389/fchem.2017.00030.

Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Zheng J, Zheng J, Zhang X, Yu X. 2013. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res. 144:113–118. DOI: https://doi.org/10.1016/j.fcr.2012.11.015.

Latif S, Chiapusio G, Weston L. 2017. Allelopathy and the role of allelochemicals in plant defence. Adv Bot Res. 82:19–54. DOI: https://doi.org/10.1016/bs.abr.2016.12.001.

Lu X, Jiang J, He J, Sun K, Sun Y. 2019. Effect of pyrolysis temperature on the characteristics of wood vinegar derived from Chinese fir waste: A comprehensive study on its growth regulation performance and mechanism. ACS Omega. 4(21):19054–19062. DOI: https://doi.org/10.1021/acsomega.9b02240.

Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158(2):844–853. DOI: https://doi.org/10.1104/pp.111.187468.

Luo X, Wang Z, Meki K, Wang X, Liu B, Zheng H, You X, Li F. 2019. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J Soils Sediments. 19(12):3934–3944. DOI: https://doi.org/10.1007/s11368-019-02365-9.

Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21(10):818–822. DOI: https://doi.org/10.1016/j.tplants.2016.07.009.

Marwan H, Rainiyati R, Mulyati S. 2020. Pengaruh aplikasi bakteri endofit terhadap perkembangan penyakit darah (Ralstonia solanacearum Phylotipe IV) pada tanaman pisang. J Budid Pertan. 16(1):95–101. DOI: https://doi.org/10.30598/jbdp.2020.16.1.95.

Mungkunkamchao T, Kesmala T, Pimratch S, Toomsan B, Jothityangkoon D. 2013. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci Hortic. 154:66–72. DOI: https://doi.org/10.1016/j.scienta.2013.02.020.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15(3):473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Pastor V, Balmer A, Gamir J, Flors V, Mauch-Mani B. 2014. Preparing to fight back: generation and storage of priming compounds. Front. Plant Sci. 5(295):1–13. DOI: https://doi.org/10.3389/FPLS.2014.00295.

Pernin A, Guillier L, Dubois-Brissonnet F. 2019. Inhibitory activity of phenolic acids against Listeria monocytogenes: deciphering the mechanisms of action using three different models. Food Microbiol. 80:18–24. DOI: https://doi.org/10.1016/j.fm.2018.12.010.

Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol. 64(9):3087–3103. DOI: https://doi.org/10.1099/ijs.0.066712-0.

Safni I, Subandiyah S, Fegan M. 2018. Ecology, epidemiology and disease management of Ralstonia syzygii in Indonesia. Front Microbiol. 9:419. DOI: https://doi.org/10.3389/fmicb.2018.00419.

Sahetapy B, Maryana N, Manuwoto Sjafrida, Mutaqin KH. 2015. Peranan beberapa jenis serangga sebagai vektor penyakit darah pada tanaman pisang [disertasi]. Bogor (ID): Institut Pertanian Bogor.

Sharma T, Dreyer I, Kochian L, Piñeros MA. 2016. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci. 7:1488. DOI: https://doi.org/10.3389/fpls.2016.01488.

Sriamornsak P, Limmatvapirat S, Piriyaprasart S. 2014. Effect of Azadirachta indica A. Juss var indica, Nicotiana tabacum L., and Derris elliptica (Roxb.) on growth of duckweed. Adv Mat Res. 1060:211-214. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1060.211.

Sulistiani E, Yani SA. 2012. Produksi Plantlet Tanaman dengan Menggunakan Teknik Kultur Jaringan. Bogor (ID): SEAMEO BIOTROP.

Supriadi. 2005. Present status of blood disease in Indonesia. Di dalam: Allen C, Prior P, Hayward A, editor. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. Minnesota (US): APS Press. hlm 394–404.

Synowiec A, Żyła K, Gniewosz M, Klieliszek M. 2021. An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. Open Life Sci. 16:594–601. DOI: https://doi.org/10.1515/biol-2021-0060.

van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 103(14):5602–5607. DOI: https://doi.org/10.1073/pnas.0510213103.

Valletta A, De Angelis G, Badiali C, Brasili E, Miccheli A, Di Cocco ME, Pasqua G. 2016. Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep. 35(5):1009–1020. DOI: https://doi.org/10.1007/s00299-016-1934-x.

Wang Y, Qiu L, Song Q, Wang S, Wang Y, Ge Y. 2019. Root proteomics reveals the effects ofwood vinegar on wheat growth and subsequent tolerance to drought stress. Int J Mol Sci. 20(4):1–23. DOI: https://doi.org/10.3390/ijms20040943.

Zheng X, van Huystee RB. 1992. Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci. 81(1):47–56. DOI: https://doi.org/10.1016/0168-9452(92)90023-F.

Diterbitkan
2022-01-17
Bagian
Articles
Tidak ada artikel terkait yang ditemukan