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A study on biotransformation of acetonitrile using Gram-positive bacteria has been conducted. Two isolates of
nitrile-degrading bacteria (strain 100A and 100D) were screened from sediments of a contaminated river in Cibinong,
West Java. The bacterial isolates were identified as Rhodococcus aff. qgingshengii based on molecular phylogenetic
analyses of 16S rRNA sequence. These bacteria were capable to grow on medium containing 100 mM acetonitrile, but
unable to grow on medium amended with 25 mM benzonitrile. Analyses using Gas Chromatography (GC) indicated
that R. aff. gingshengii strain 100A and 100D has the ability to produce nitrile hidratase and amidase. The highest
enzyme activity on mineral medium with the addition of 100 mM acetonitrile was 73.49 mmol/min/mL by strain 100A,
and 70.52 mmol/min/mL by strain 100D. In addition, the ammonia concentration produced by strain 100A and 100D
were 180.20 and 54.10 mM, respectively. These results were supported by molecular characterization using specific
primers, where strain 100A and 100D positively contain genes encoding a-nitrile hydratase (a-NHase) and amidase.
There was a difference at the first position of amino acid composition of the gene encoding a-NHase between strain
100A (Methionine') and strain 100D (Glycine'), but the amino acids composition of amidase of both strain were

identical. This is the first report of R. aff. gingshengii as nitrile-degrading bacterium in Indonesia.
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INTRODUCTION

Nitrilehydratase (NHase) (EC4.2.1.84)and amidase
(EC 3.5.1.4) are group of nitrile-converting enzymes
that hydrolyze nitriles into the corresponding higher-
value amides and acids (Nagasawa & Yamada
1990). NHase and amidase, including other nitrile-
converting enzymes, have attracted interest not only
because of their role as biocatalyst in the production
of solvents, extractans, drug intermediates (chiral
synthons), pesticides as well as in the synthesis
organic amine, amide, ester, carboxylic acid,
aldehydes, ketones, and heterocyclic compounds
(Banerjee et al. 2002), but also because nitrilases
have advantages over the chemical hydrolysis due
to their milder pH and temperature conditions,
and the absence of by-products (Nagasawa et al.
2000). For example, the application of NHase from
Rhodococcus rhodochrous J1, which is currently
used in the production of acrylamide (Nagasawa
et al. 1993; Yamada & Kobayashi 1996) and
nicotamide (Nagasawa et al. 1988) at industrial
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scale. Wyatt and Knowless (1995) reported that
NHase has also practical importance as biocatalysts
for environmental bioremediation in the removal of
nitriles from waste streams.

The potential of NHase and amidase in the
industries has encouraged extensive research and
exploration in the discovery of more novel bacteria
producing these enzymes from various habitats and
geographical regions. Until now, the majority of
bacteria producing NHase and amidase enzymes
have been reported from shallow marine sediment
(Langdahl et al. 1996), deepsea sediments (Heald et
al. 2001), geothermal habitats (Pereira et al. 1998),
and various soils (Blakey et al. 1995; Brandao et
al. 2003). Polluted environment (Cahill 2004;
Kabaivanova et al. 2005; Coffey et al. 2009) have
also been explored in the discovery of novel bacteria
producing NHase and amidase enzymes. In the
current study, two strains of a-NHase and amidase
producing bacteria isolated from polluted river in
Cibinong, West Java (Indonesia) were determined
using sequence analyses generated from 16S rRNA
region. The genes encoding a-NHase and amidase
of these bacteria were also characterized and
sequenced.
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MATERIALS AND METHODS

Organisms and Growth Condition. Two nitrile-
metabolizing bacteria (strain 100A and 100D)
were isolated from polluted-river sediment using
mineral medium (MM) (Meyer & Schlegel 1983)
supplemented with 10-25 and 50-100 mM of
acetonitrile. Selected bacteria were grown on nutrient
agar (NA) DIFCO and mineral medium (MM) with
the following composition (per 1000 mL): 0.4475 g
Na,HPO,2H,0; 0.1 g KH,PO,; 0.1 g MgSO,7H,0;
0.01 g CaCl,2H,0; 0.001 g FeSO,7H,0, 0.01 g
yeast extract, and 1 mL micro-elements (Meyer
& Schlegel 1983). The micro-element composed
of 0.1 g ZnSO,7H,0; 0.03 g MnCl4H,0; 0.3
g H,BO,; 0.2 g CoCI6H,0; 0.01 g CuCl,2H,0;
0.02 g NiCl,2H,0; 0.9 g Na,MO,2H,0; 0.02 g
Na SeO, within 1000 mL distilled water (Pfennig
1974). Acetonitrile and benzonitrile were added in
the medium at concentration of 100 and 25 mM,
respectively.

DNA Extraction and PCR Amplification of
16S rRNA Gene. DNA extraction and Polymerase
Chain Reaction (PCR) amplification were carried
out in order to obtain genomic DNA for bacterial
identification using sequence of 16S rRNA. The
genomic DNA from bacteria were obtained from
48 h colonies using the guanidium thiocyanate/
EDTA/Sarkosyl (GES) method as described by
Pitcher et al. (1989). The 16S rRNA gene was
amplified using the wuniversal primers: 27F
(5’-AGAGTTTGATCCTGGCTCAG-3") and
1500R (5’-GTTACCTTGTTACGACTT-3"). The
PCR components were set as follows: 2 uL. DNA
template (+ 100 ng), 25 uL Go Tag® PCR master
mix (Promega), and 20.5 pL PCR-grade water
(Sigma). The amplification was carried out using a
PCR thermocycler (TaKaRa Shuzo Co., Ltd., Shiga,
Japan) with the following condition: 95 °C for 3
min of predenaturation; followed by 30 cycles of
95 °C for 30 sec of denaturation, 50 °C for 30 sec of
annealing, 72 °C for 90 sec of extension, and 72 °C
for 10 min of final extension. The quality of the PCR
products were determined using electrophoresis in
1.5% agarose gel. DNA nucleotides were sequenced
by FirstBASE (Malaysia) using the same primer
pairs used in the PCR reaction.

Phylogenetic Analysis. Bacteria were identified
using phylogenetic analyses. Newly sequences of
bacteria generated from 16S rRNA region were
aligned with the homologous sequences obtained
from NCBI GenBank database (http://www.ncbi.
nlm.nih.gov/) using Basic Local Alignment Search
Tool (BLAST) available at the GenBank website.
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Phylogenetic analysis was performed using
MEGA (Molecular Evolutionary Genetics Analysis)
v5.1 software (Tamura et al. 2011). Maximum
Likelihood (ML) was used in the analyses involving
the Tamura Nei model as nucleotide substitution
parameter and gap was treated as missing data.
Searching of the best phylogenetic trees was done
by using a heuristic method with Nearest Neighbor
approach Interchange (NNI), an initial tree was
generated based on Neighbor Joining analysis
(NJ). Phylogenetic tree was evaluated by bootstrap
method using 1000 replication.

Bacteria Growth Assay. Bacterial isolates
were grown in mineral medium containing nitrile,
as the sole source of carbon, energy and nitrogen.
A loopful bacterial was inoculated into 50 mL
mineral medium in 100 mL Erlenmeyer flask.
262 pL of 100 mM acetonitrile or 130.2 pL of 25
mM benzonitrile was added into the medium and
incubated at 30 °C for 72 h on the shaker incubator
at 120 rpm. Bacterial growth pattern was observed
every 2 h by measuring the optical density (OD).
Measurement of microbial growth was carried out
every 24 h for 7 days at 436 nm wavelength. pH,
acetonitrile concentration, and the formation of
transformation products (acetamide, acetic acid, and
ammonia) during bacterial growth were measured.

Bacterial Cells Production for Nitrile
Biotransformation Assay. A loopful bacteria was
inoculated into 50 mL mineral medium in 100 mL
Erlenmeyer falsk. 262 pL of 100 mM acetonitrile
was added into the medium and incubated at 30
°C for 72 h on the shaker incubator at 120 rpm.
2% (v/v) bacterial cells grown in 500 mL mineral
medium in 1000 mL Erlenmeyer flask, and
2.626 mL of 100 mM acetonitrile was added. The
flask was incubated in a shaker incubator at 30 °C
for 72 h (120 rpm). Bacterial cells were harvested
by centrifugation at 10,000 rpm, 4 °C for 10 min.
The pellet was washed twice with phosphate buffer
(50 mM KH,PO, and 50 mM K, HPO,), pH 7.2. Cell
suspension was centrifuged before weighed and
stored in a freezer for the biotransformation assay.

Nitrile Biotransformation Assay. Biotransformation
of nitrile was carried out by adding 2 g pellets (wet
weight) into 500 mL of phosphate buffer (50 mM
KH,PO, and 50 mM K HPO,), pH 7.2, in 1000 mL
Erlenmeyer flask. Approximately 2.626 mL of 100
mM acetonitrile was added into the medium. The
flask was incubated on the shaker incubator at 30
°C for 3 h (120 rpm). At regular intervals (0, 5, 15,
30, 60, 90, 120, 150, and 180 min), 2 mL of samples
were taken for pH, OD growth and biotransformation
process measurement. The reaction was stopped by
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adding 0.25 pL of 5 N HCI. After the enzymatic
reaction stopped, samples were neutralized by
adding 5 mL of 0.25 N NaOH. Samples were then
centrifuged, and the resulting supernatant was taken
for determination acetonitrile, acetamide and acetic
acid.

Analysis of acetonitrile, acetamide, and acetic
acid performed in Gas Chromatography (GC)
equipped with Flame Ionization Detector (FID)
using a Porapak Q column. Analysis conditions
were set as follows: 1 mL sample is injected at
225, 240, and 240 °C of oven, injector, and detector
temperature, respectively. N, was used as a carrier
and H, was used as detectors, and these gases were
pumped at 11 mL/min (Sunarko et al. 2000).

Ammonia Concentration Assay. Determination
of ammonia was performed using the Nessler
method. A total of 10 mL of enzyme solution was
addedinto 0.99 mL of 0.1 NNaOH and 20 mL Nessler
reagent. The solution was incubated at 30 °C for 20
min, and then measured using a spectrophotometer
at a wavelength of 420 nm (Oliver ef al. 1989).

DNA Extraction and PCR Amplification
for Nitrilases Gene. DNA extraction and PCR
(Polymerase  Chain  Reaction) amplification
were carried out in order to obtain genomic
DNA for nitrilases gene characterization. The
genomic DNA from bacteria were obtained from
48 h colonies using the guanidium thiocyanate/
EDTA/Sarkosyl (GES) method as described
by Pitcher er al. (1989). The NHase gen was
amplified wusing primer pairs of o-NHI-F
(5’-GTGAACCAGATGTCAGTAACGATCG-3")
and o-NHI-R (5’-CGCTCAGGCAGTCCTTGGT
GACG-3’), and amidase gen was amplified using
primer pairs of amdl-F (5’-GTGAAGCCGATCA
CATCAGGAGC-3’) and amd2-R (5’-CGGGTACC
AATCCCTTACCGTCG-3’) (Brandao et al. 2003).
The PCR components and PCR condition were set as
previously described in the bacterial identification.
The quality of the PCR products were determined
using electrophoresis in 1.5% agarose gel. DNA
nucleotides were sequenced by FirstBASE
(Malaysia) using the same primer pairs used in the
PCR reaction.

Phylogenetic Analysis of the o-NHase and
Amidase Genes. Nucleotides sequences of a-NHase
and amidase of R. aff. gingshengii strain 100A and
100D were aligned with available a-NHase and
amidase equences retrieved from GenBank. The
phylogenetic analysis of nitrilases genes of selected
bacteria was carried out by using the same method
as in the identification of bacteria.
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RESULTS

Identification of Bacteria. BLAST result
showed that three Rhodococcus species, namely, R.
qingshengii, R. baikonurensis, and R. erythropolis
were the most homologous bacteria with bacterial
isolates strain 100A and 100D, with a maximum
identity of sequence homology reaches 99 and
100%, respectively. In the phylogenetic analysis,
the type species of these species were included
in the analyses together with other Rhodococcus
species. The phylogenetic tree generated from the
ML analyses of 16S rRNA sequence showed that
the genus Rhodococcus is monophyletic with 92%
bootstrap support (BS) (Figure 1). Strain 100A and
100D nested in the same clade with R. gingshengii,
R. baikonurensis, and R. erythropolis with 83% BS.
The clade indicated a close relationship between
strain 100A and 100D to those of R. gingshengii,
R. baikonurensis, and R. erythropolis. Multiple
nucleotide sequence analyses among these isolates
showed that there were eight nucleotides differences
of R. erythropolis to each of strain 100A and 100D,
and there were three nucleotides differences of R.
baikonurensis to each of strain 100A and 100D.

The same analyses showed that R. gingshengii
was identical to that of strain 100D and only single
nucleotide difference of R. gingshengii to strain
100A. Based on the phylogenetic tree and multiple
nucleotide sequence analyses, the bacterial strain of
100A and 100D were identified as Rhodococcus aff.
gingshengii. Code ‘aff.” or ‘affinity to’ refers to the
closest only nucleotide sequences and phylogenetic
affinity of strain 100A and 100D to that of R.
qingshengii.

Bacterial Growth Assay. This assay showed
that R. aff. gingshengii strain 100A and 100D were
capable to grow properly after incubated for 72 h. It
was indicated by the increasing of OD value in the
mineral medium amended with 100 mM acetonitrile
(Figure 2).

Log phase of R. aff. gingshengii strain 100D
was found at 24-48 h while the log phase of R. aff.
qingshengii strain 100A was found at 8-32 h. The
highest enzyme activity of R. aff. gingshengii strain
100A was found at 76.04 mmol/min/mL at 52 h, and
R. aff. gingshengii strain 100D was found at 61.34
mmol/min/mL at 72 h. During the bacterial growth
incubated for 7 days (Figure 3), the log phase of R.
aff. gingshengii strain 100A started from 2nd day to
3rd day,while the log phase of R. aff. gingshengii
strain 100D started from the first day to 2nd day.
During bacterial growth, a change in pH value
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—Rhodococcus aff. gingshengii strain 100D
—KC355321 Rhodococcus qingshengii strain KUDC1814
—DQ090961 Rhodococcus gingshengii strain djl 6T
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Figure 1. The phylogenetic tree from the Maximum Likelihood analyses of 16S rRNA sequence of Rhodococcus aff. gingshengii
100A and Rhodococcus aff. gingshengii 100D.
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Figure 2. Bacterial growth incubated for 72 hours in the mineral medium amended with 100 mM acetonitrile. (A) Isolate
Rhodococcus aff. gingshengii 100A and (B) Isolate Rhodococcus aff. gingshengii 100D. = pH, - Total enzyme activity
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Figure 3. Bacterial growth incubated for 7 days in the mineral medium amended with 100 mM acetonitrile. (A) Isolate Rhodococcus
aff. gingshengii 100A and (B) Isolate Rhodococcus aff. gingshengii 100D. -o- pH, & Total enzyme activity (mmol/mnt/
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Figure 4. The nitrile biotransformation assay. (A) Rhodococcus aff. gingshengii 100A (B) Rhodococcus aff. gingshengii 100D.
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was found unpredictable. Range of pH was found
about 7-9. During the bacterial growth, there was
an increase in enzyme activity of R. aff. gingshengii
strain 100A and 100D with 73.49 and 70.52 mmol/
min/mL, respectively at fifth day.

Nitrile Biotransformation Assay. The nitrile
biotransformation assay showed that NHase

and amidase enzymes involved during the
biotransformation of nitrile by R. aff. gingshengii
strain 100A and 100D. In the current study, highest
ammonia levels obtained was 180.20 mM produced
in the acetonitrile biotransformation by R. aff.
qingshengii strain 100A at 50 min incubation
(Figure 4). This was supported by faster reduction
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level of acetonitrile in the medium containing R.
aff. gingshengii strain 100A compared to medium
containing R. aff. gingshengii strain 100D.

Gas chromatography analysis showed a
reduction in the concentration of acetic acid and
acetamide (Figure 4). It was probably due to the
acetic acid and acetamide were utilized by R. aff.
qingshengii strain 100A and 100D for the synthesis
of cells during bacterial growth in biotransformation
process. During the biotransformation, acetonitrile
concentration in the medium inoculated with R. aff.
qingshengii strain 100A started to decrease after
5 min incubation into 9.78 mM. The acetonitrile
was completely degraded after 30 min incubation.
However, in the medium inoculated with R. aff.
qingshengii strain 100D, the acetonitrile was
completely degraded after 90 min incubation.

Molecular Characterization of Nitrile Degrading
Enzymes (0-NHase and Amidase). NHase consists
of two sub-units, a and 3, with molecular weight
23 kDa. About 400 bp bands were formed of which
indicated the presence of a-NHase gene in the R. aff.

AY223830 Rhodococcus erythropolis ARG AN024

AY?223834 Rhodococcus erythropolis 871 AN053
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gingshengii strain 100A and 100D. Several strains
of R. erythropolis and R. rhodochrous showed high
homology to those of a-NHase nucleotide sequence
of R. aff. gingshengii strain 100A and 100D with
99-100% similarity (http://blast.ncbi.nlm.nih.gov/
Blast.cgi).

Phylogenetic tree generated from maximum
likelihood analyses of a-NHase nucleotide sequence
showed that four monophyletic clades were formed
(Figure 5). The first clade contains R. rhodochrous
and R. erythropolis ARG AN024 (rainforest soil,
Argentine), 871 AN053 (sea sediment, Japan), ARG
ANO025 (rainforest soil, Argentine), ANT ANO007
(lake sediment, Antarctic), DSM 13002 (garden soil,
Germany), 67 BEN0OO1 (deep-sea sediment, Japan),
DSM 43.006 (soil, unknown) with 65% BS. The
second clade contains R. erythropolis 871 AN042
(deep-sea sediment, Japan), ENG AN033 (swamp,
England) and IND ANO14 (mangrove forest,
Indonesia). Rhodococcus aff. qingshengii strain
100A nested in the same clade with R. erythropolis
122 ANO65 (deep-sea sediment, Japan) with 64%

E12519 Rhodococcus rhodochrous

AY?223829 Rhodococcus erythropolis 870 AN019

65

AY223827 Rhodococcus erythropolis ANT AN0O7
AY223836 Rhadococcus erythropolis DSM13002

AY223825 Rhodococcus erythropolis 67 BEN001

AY223831 Rhodococcus erythropolis ARG AN02S I

AY223835 Rhodococcus erythropolis DSM43006

AY223833 Rhodococcus erythropolis 871 AN04

IAY 223832 Rhodococcus eryihropolis ENG AN033 II

AY223828 Rhodococcus erythropolis IND AN014
Rhodococcus gingshengii strain 100A 58.6

Rhodococcus gingshengii strain 100A 63.9
64

AY223826 Rhodococcus erythropolis 122 AN065

68

III

Rhodococcus qingshengii strain 100D 54

Rhodococcus qingshengii strain 100D 56.1

0.001

Figure 5. Phylogenetic tree generated from maximum likelihood analyses of a-NHase nucleotide sequence for R. aff. gingshengii

100A and R. aft. gingshengii 100D.
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BS, while two sequences of R. aff. gingshengii
strain 100D formed independent clade with 68%
BS.

In the electrophoresis analyses of amidase gene
of R. aff. gingshengii strain 100A and 100D, about
1900 bp bands were formed. BLAST analyses
of amidase nucleotide sequences showed highest
similarity with amidase nucleotide sequence
belonging to several strains of R. erythropolis (http://
blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic tree
generated from ML analyses based on amidase
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nucleotide sequences showed that R. aff. gingshengii
strain 100A and 100D nested in the same clade
with Rhodococcus sp. N774, Microbacterium sp.
AJ115, Rhodococcus sp. N771, Brevibacterium sp.
strain R312, R. erythropolis strain AJ270, and R.
erythropolis strain AJ300 with 100% BS (Figure 6).

DISCUSSION

Bacterial Growth Assay. Inability of these
bacteria in degrading benzonitrile was probably due

Rhodococcus aff. gingshengii strain 100A [annealing 52.3]

100

64

89

Ly

0.0  0.004

Rhodococcus aff. gingshengii strain 100A [annealing 54]
Rhodococcus aff. gingshengii strain 100D [annealing 63.9]
Rhodococcus aff. gingshengii strain 100D [annealing 64.6]
X54074 Rhodococcus sp. N774
AJ716149 Microbacterium sp. AJ115
AB016078 Rhodococcus sp. N771
M60264 Brevibacterium sp. strain R312
AJT16152 Rhodococcus erythropolis strain AJ270
AJ716150 Rhodococciis erythropolis strain AJ300
AJ490527 Rhodococcus erythropolis strains AJ270
JQ023030 Rhodococcus erythropolis strain CCM2595

___ IN889708 Rhodococcus erythropolis strain 11-1-3

AM946017 Rhodococcus ervthropolis strain A4
IN936271 Rhodococcus erythropolis strain 112

___ABI105912 Rhodococcus globerulus strain A4

—  IN889709 Rhodococcus erythropolis strain 416
IN936273 Rhodococcus erythropolis strain 417

IN936272 Rhodococcus rhodochrous strain 118

Figure 6. Phylogenetic tree generated from maximum likelihood analyses of amidase nucleotide sequence for Rhodococcus aff.
qingshengii 100A and Rhodococcus aff. gingshengii 100D.
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to the complexity in benzonitrile chemical bond
of which contains cyclic structure (Sulistinah &
Riffiani 2011). In general, screening of microbial
producing NHase is difficult because of gene
regulation of NHase is heavily influenced by amide
compounds and few species of bacteria are able to
produce NHase using selective media (Kobayashi
& Shimizu 1998).

During the growth phase, the pH value of
medium was changed to alkaline. This was due
to the accumulation of ammonia in the medium
during bacterial growth. Suhartono (1989) noted
that the presence of extracellular enzyme activities
and microbial growth in fermentation process
often yields by-products that change the pH of
the medium. It is interesting to know that R. aff.
gingshengii strain 100A and 100D to the alkaline
pH. It is possible that both strains are alkali tolerant,
therefore, an increase in the pH value in the medium
during the growth phase did not inhibit the growth
of R. aff. gingshengii strain 100A and 100D, and did
not inhibit the activity of nitrile degrading enzyme.
Until now, there is no evidence that the degradation
of nitrile compounds by Rhodococcus spp. can
be carried out in alkaline conditions. Other than
Rhodococcus spp., Sorokin et al. (2007) reported
that Natronocella acetinitrilica isolated from soda
lakes capable of producing the enzyme NHase,
and can grow at pH 10 in medium amended with
3M acetonitrile. Duthaler (1994) stated that the
enzymatic hydrolysis reaction of nitrile compounds
in alkaline conditions has its own advantages,
especially when cyanide compounds contribute
in the enzymatic reactions, e.g. Strecker reaction
when combined with enzymatic hydrolysis reaction
of o-aminonitrile (enantio-selective) will produce
a-aminoamida and o-amino acids.

Nitrile Biotransformation by R. aff. gingshengii
Strain 100A and 100D. During the assay of
biotransformation of nitrile compounds, acetonitrile
was the only carbon and nitrogen source for the
growth of R. aff. gingshengii strain 100A and 100D.
This situation caused a decrease in the acetonitrile
concentration in the medium because the bacteria
will produce enzymes to metabolize the substrate
through the process of degradation (Nawaz et al.
1989). During the biotransformation process of
acetonitrile by R. aff. gingshengii strain 100A and
100D, amide compounds was produced in the form
of acetamide, and carboxylic acid in the form of
acetic acid and ammonia. These process involving
NHase and amidase enzymes.

In general, the first product formed during
the biotransformation process was acetamide.
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This product was the result of the acetonitriles
biotransformation by NHase into amide
compound in the form of acetamide, followed
by the formation of acetic acid and ammonia as
a result of biotransformation of acetamide by
amidase enzyme. The biotransformation of nitrile
compounds by bacteria usually takes place in two
steps, of which the first reaction involves NHase and
amidase, whereas the second reaction involves only
nitrilase (Kim et al. 2001). It was supported by the
formation of acetic acid, acetamide and ammonia
during the biotransformation process as previously
also reported by Asano et al. (1982) and Kim et al.
(2001). Basically, the activity of nitrile compounds
biotransformation characterized by the formation of
ammonia (Heald et al. 2001).

Molecular Characterization of Nitrile Degrading
Enzymes (o-NHase and Amidase). Kobayashi et
al. (1992) reported that the amino acid sequences
of the two sub-units are not interconnected and the
structural genes of NHase are usually adjacent in
the same operon, although the coding sequence of
sub-units of a and B are variable.

Multiple alignment analyses of amino acid
sequences of R. aff. gingshengii strain 100A and
100D with several o-NHase nucleotide sequences
belonging to R. erythropolis obtained from the
GenBank database showed a closest similarity
between R. aff. gingshengii strain 100A with R.
erythropolis 122-AN065. The latter species isolated
from deep-sea sediments (Brandao et al. 2003).
This was supported by the phylogenetic analysis
where R. aff. gingshengii strain 100A nested in
the same clade with 64% BS (Figure 5). Although
R. aff. gingshengii strain 100D was isolated from
the same source to that of strain 100A, however,
the amino acid composition of their a-NHase gene
was different. The differences found in the amino
acid position 1 where R. aff. gingshengii strain
100D encodes Glycine' (G), while strain 100A
encodes Methionine! (M) (Figure 7). Rhodococcus
erythropolis and R. rhodochrous encode Methionine!
(M) at this position. This result showed that there
were variations in the amino acid composition of
the gene encoding o-NHase on intra- and inter-
species. Nevertheless, the significance of amino
acid substitutions on the characteristics of a-nitrile
hidratase activity is unknown. Pratush et al. (2011)
reported that the Methionine (M) and Isoleucine
(D) characterized hydrophobic properties, and are
grouped into aliphatic amino acids. Methionine
(M) allegedly has a correlation with functional
protein stability at high temperature (55 °C) and
acidic conditions (pH 5.5). Variability in the gene
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encoding the amino acid a-NHase also found in
R. erythropolis (Brandao et al. 2003). Nakasako
et al. (1999) reported that the variability of genes
encoding amino acid a-NHase may cause variability
in enzymatic activity.

In the multiple alignment analysis of the
amino acid sequence encoding amidase (Figure 8)
belonging to R. aff. qingshengii strain 100A and
100D as well as R. erythropolis AJ300 obtained
from the GenBank database, it was known that
the R. aff. gingshengii strain have three amino
acid differences with R. erythropolis AJ300. The
differences was found in the amino acid position
265 where R. aff. gingshengii strain 100A and 100D
encodes Leucine?” (L), but R. erythropolis AJ300
encodes Proline’® (P). At amino acid position
338 and 373, R. aff. gingshengii strain 100A and
100D encodes Glycine®*® (G) and Serine®*® (S),
respectively. However, R. erythropolis AJ300
encodes Serine®® (S) and Glutamic acid®*® (E).
Molecular characterization of genes encoding
nitrile-degrading enzymes is important, because
this method is powerful and more sensitive for
further discovery and screening of nitrilases-
producing bacteria. With the increasing amount
of sequence information obtained from the new
gene cloning and sequence genome, it allows the
prediction of ‘conserved’ regions to develop specific
primer for molecular screening of microorganisms
capable of producing a-NHase and amidase, either
cultivated or uncultivated. The sequencing results
is fundamental for the development of molecular-
based screening methods, which is faster and more
sensitive than the previous molecular methods using
DNA hybridization techniques (Duran et al. 1993).
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