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1. Introduction

	 The rice is one of the most important staple 
foods for a large part of the world. Monitoring its 
bio-physical variables is valuable for agricultural 
management and yield prediction (Koppe et al. 2013). 
With the increase in global food and energy demand, 
studies on paddy plants aim to provide direct or 
indirect information for researches on food security, 
water resource management, and environ-mental 
sustainability (Wang et al. 2015). The availability of 
adequate food is the condition of the fulfillment of 
food needs for households both from the amount and 
quality, safe, equitable and affordable. Food security 
can be achieved if food sources from land and sea can 
be guaranteed continuously. The primary food source 
for more than half of the world’s population is rice 
(Oryza sativa) generally a significant proportion of 

the intake of other nutrients as well. Food security 
for Indonesia is closely related to the adequacy of 
rice supply (Suwarno 2010). The rice is one of the 
important crops in developing countries since rice 
is a global staple food for humans supplying a large 
fraction of the needs for energy-rich materials. 
Demand for rice is projected to increase by nearly 
70% until 2025 (Bouvet et al. 2009). The decline of 
rice harvested area caused by population increase and 
intensification of economic development. Changes 
paddy cropland distribution and management such 
multi-cropping, water management, fertilizer use, and 
cultivars are predicted to increase over the coming 
decades. 
	 Understanding the growth phases of the rice 
growth cycle is crucial in explaining their effect on the 
SAR system responses (Yuzugullu et al. 2017). The most 
common rice cultivation practice begins by flooding 
the fields several weeks before sowing. Rice growing 
phase is commonly divided into three phases, which 
consist of a total of ten growth stages. The first phase 
is the vegetative phase from germination to panicle 
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initiation. The second phase is the reproductive 
phase consists of the panicle initiation, heading, and 
flowering stages. The Ripening is the final phase with 
its milk, dough and mature grain stages (Datta 1981). 
These stages coincide with changes in growing phase 
of rice plant that affected by the interaction between 
surface and microwaves thus can be observed with 
remote sensing data. Multi temporal remote sensing 
techniques provide valuable information for the 
mapping of rice plant and distinguishing rice plant 
from other land-cover types by monitoring changes 
in plant morphology (Nguyen et al. 2015).
	 Accurate and timely information on the type of 
the crop grown and the crop growth conditions are 
essential parameters for crop production estimations. 
These estimations are needed for guiding the decision 
makers in formulating optimal strategies for planning, 
distribution, marketing, transportation and storage 
of the essential agricultural product (Taghvakish 
2012). Monitoring at every growth of rice plants is 
an important information for determining the grain 
production estimation of rice. However, timely 
monitoring and the high accuracy of information is a 
challenge in remote sensing based on rice agriculture 
monitoring and observation. As compared to optical 
sensors, spaceborne radar synthetic aperture 
(SAR) instruments can overcome optical inherent 
limitations of systems owing to its all-weather, day 
and capabilities night acquisition and sensitivity to 
surface characteristics (Koppe et al. 2013). Most paddy 
rice is planted in warm and humid regions in the 
world, frequent cloud cover or rainfall often occurs 
in rice growing season (Jing et al. 2013). Synthetic 
aperture radar (SAR) has great potential, especially 
in monsoon Asia, since optical observations are 
often hampered by cloudy conditions. SAR images 
are useful for classifying rice paddy fields because 
of the unique specular feature of flooded conditions 
(Inoue et al. 2002). With the high resolution of spatial 
and temporal polarimetric data such as Radarsat-2 
along with the support of statistical data from the 
agricultural department and field survey, the issue 
will be solved (Aishah et al. 2016). Polarimetric SAR 
data has proved to provide more information on 
grounds targets than single and multipolarization 
SAR data because they include both magnitude and 
phase information. RADATSAT-2 quad-polarization 
data possess the capability of polarimetric SAR 
with high spatial resolution, which suggest that it 
produce more information on rice growth (Chen et 
al. 2014). Radarsat-2 quad polarimetric consist of 
more information on the electromagnetic scattering 
characteristics of the terrain targets compared to 
conventional single, dual or quad polarization. SAR 
data Polarimetric decomposition of Radarsat-2 
quad polarimetric acquisitions showed promising 
results regarding not only the binary rice/non-rice 
classification of images but also the detection growing 
phase of rice plant (Nguyen et al. 2015).

	 The SAR capabilities in data acquisition for tropical 
condition is the most significant advantages for 
ground surface mapping (Nurtyawan et al. 2016). 
SAR is an active sensor that transmitted from the 
sensor toward the terrain, and recorded by the 
remote sensor’s receiver. SAR is not limited by cloud 
coverage in tropical and subtropical regions where 
most rice is grown. SAR has become an indispensable 
tool which can provide timely and consistent spatial 
and temporal coverage needed at regional to global 
scales that capable for monitoring changes in the 
rice production area and cultivation intensity. The 
selection of appropriate sensor parameters is crucial 
for agricultural monitoring. For instance, with SAR 
systems, one should match the size of the structural 
parts of the crops with the available wavelength 
(frequency) of the system to identify the effects of 
morphological changes (Yuzugullu et al. 2017). The 
backscatter behavior of rice as function of time is so 
unique that it can be used to distinguish rice from other 
crops that can be analyzed the correlation between 
backscattering coefficient and rice growth parameters 
from multi-temporal Radarsat-2 polarimetric SAR 
images (Fan et al. 2015). The backscattering response 
from natural surfaces and to retrieve the surface 
parameters such as dielectric permittivity and surface 
roughness have been undertaken in microwave 
remote sensing studies (Nurtyawan et al. 2018) . 
In agricultural fields radar backscattering are also 
affected by vegetation cover, plant water content, and 
crop residue (Nurtyawan et al. 2016).
	 The biophysical and quantitative approach of 
SAR-based technology is very powerful for rice 
vegetation observation. The quality of synthetic 
aperture radar (SAR) systems increased with utilizing 
polarimetric information recently, the development 
and applications of polarimetric SAR (PolSAR) are 
one of the current major topics in radar remote 
sensing. In recent years, the advantages provided by 
PolSAR data for agricultural monitoring have been 
extensively studied for applications such as crop-
type classification and mapping, crop phenology 
monitoring, productivity assessment based on the 
sensitivity of polarimetric parameters to indicators 
of crop conditions (Yang et al. 2014).
	 The polarimetric decomposition is a useful 
technique to interpret physically the scattering 
mechanisms present in the scene when fully PolSAR 
data are available (Xie et al. 2016). PolSAR is a well-
established technique that allows identification 
and separation of scattering mechanisms in the 
polarization signature for purposes of classification 
and parameter estimation (Zhang et al. 2008). Several 
decomposition techniques have been proposed along 
with the utilization of fully polarimetric data sets 
provided by PolSAR platforms. The decomposition 
techniques can be categorized into either of two main 
groups. One is based on eigenvalue analysis, and the 
other employs scattering model-based decomposition 
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originally proposed by Freeman and Durden (Sugimoto 
et al. 2012).
	 The Freeman-Durden decomposition is a physical 
scattering model-based decomposition, describing 
the polarimetric backscatter from naturally occurring 
scatters. It decomposes the backscatter response into 
three categories of volume scattering (V) modeled 
as a set of randomly oriented dipoles, the double-
bounce scattering (D) modeled by a dihedral with 
orthogonal surfaces of different dielectric properties, 
and surface or single-bounce scattering modeled 
by a first-order Bragg surface scatter (S) (Freeman 
and Durden 1998). The Freeman–Durden three-
component decomposition are the original works of 
model-based incoherent decomposition methods. 
Freeman and Durden successfully decomposed fully 
PolSAR data into three components: Single bounce, 
double bounce, and volume scattering (Hong et al. 
2015). This approach can be used to determine the 
dominant scattering mechanisms and to facilitate 
identifying the current state of the surface cover. The 
three-component scattering provides features for 
distinguishing between different surface cover types. 
The advantage of the Freeman-Durden decomposition 
is that it is based on the underlying physics of radar 
scattering and not just a purely mathematical 
construct (Freeman and Durden 1998).
	 This research is aimed at examining of three-
component decompositions of Freeman-Durden to 
classify growing phase of rice plants. We based our 
study on quad-polarimetric data from Radarsat-2 
(C-band, 5.6 cm). A continuous time series of 
polarimetric data will provide a better understanding 
of how the backscatter response changes throughout 
the growing phase, particularly in Indramayu district.

2. Materials and Methods

2.1. Study Area
	 The study area was located in Indramayu district 
(107°52’-108°36’ BT and 6°15’-6°40’ latitude) (Figure 
1). Field experiments were carried out at a typical 
paddy site in Indramayu. The location of Indramayu 
district which stretches along the north coast of Java 
Islands. The network of monitored fields is mainly 
located in the paddy field. Altitude region generally 
ranges between 0-18 m above sea level and the low 
lying areas ranges between 0-6 m above sea level 
that consists of swamps, ponds, paddy fields, yards. 
The mean daily air temperature quite high 28°C. This 
situation is susceptible to drainage, when rainfall 
is high low areas will occur puddles and when the 
dry season would cause severe drought (Pemerintah 
Provinsi Jawa Barat 2017).

2.2. Data
Four consecutive fully polarimetric C-band 

Radarsat-2 images were acquired in repeat pass 
during the growing season in 2014. All of them were 

acquired with the same beam mode and orbit pass, in 
order to build a time series in the most consistent way 
(Table 1). The classification analysis was per-formed 
on June 18, 2014 when the rice was in the beginning 
of the heading growing phase, which was proved to 
be optimal for rice identification in our four-temporal 
data set. Their acquisition periods cover the most 
critical growing phase of the crop, from its sowing to 
its harvest, as shown in Table 2. Original Radarsat-2 
images were provided in single look complex (SLC) 
format with pixel size of 6.89  and 4.83 m in azimuth 
and ground range directions, respectively.

2.3. Characteristics of Rice Plants and Growing 
Phase

Based on The International Rice Research Institute, 
growing phase classifies divided to three stage: (1) 
the vegetative phase from germination to panicle 
initiation, (2) the reproductive phase from panicle 
initiation to flowering, and (3) the ripening phase 
from flowering to mature grain (Datta 1981). The 
growing cycle encompasses the three growth phases, 

Figure 1. Study area in Indramayu Region, West Java 
is showed by red rectangular of Radarsat-2 
acquisition paths
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Table 1. Main parameters of five Radarsat-2 images

Parameter 	       Values
Imaging Mode
Center frequency
Incidence angle
Resolution
Orbit direction
Beam mode
Polarization

Fine Quad Polarization
5.405 GHz
31.50°
about 8 m
Ascending
FQ12
HH+HV+VH+VV

Table 2. Acquisition dates of four Radarsat-2 images and 
corresponding growing phase of paddy

Acquisition dates

June 18, 2014
August 5, 2014
September 22, 2014
October 16, 2014

Vegetative
Reproductive
Harvest
After harvest/seeding

           Growing phase
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which include10 growing phase: 0, germination; 1, 
seedling; 2,  tillering; 3, stemelongation; 4, panicle 
initiation/booting; 5, heading; 6, flowering; 7, milk 
stage; 8, dough stage; and 9, mature grain. Stages 0–3 
constitute the vegetative phase, stages 4–6 correspond 
to the reproductive phase, and stages 7–9 describe the 
ripening phase (Kuenzer and Knauer 2013).

The duration of the growing cycle depends on defined 
by the length of the vegetative phase, the variety of rice 
species and the climate conditions. The reproductive 
phase is about 35 days and the ripening phase is about 
30 days in tropical regions. Tropical rice varieties have 
an average life cycle of 110–120 days, and the duration 
of the life cycle in temperate regions is about 140–150 
days (Toan et al. 1997).

2.4. Method
Radarsat-2 can transmit and receive horizontally or 

vertically polarized signals. A combined polarization 
radar image consist of HH (horizontal transmitting, 
horizontal receiving), VV (vertical transmitting, 
vertical receiving), HV (horizontal transmitting, 
vertical receiving), or VH (the reverse of HV) as 
presented by Figure 2. Characteristics of scattering 
depend on the polarization properties of the target, 
PolSAR image.

Each image was ingested into the S4C scattering 
matrix using PCI Geomatica version 2016. The single 
look complex (SLC) data, ingested and stored in a 
scattering matrix format, were imported to PCIDSK 
file, and then a boxcar filter with 5 x 5 window 
size was applied followed by the symmetrization 
to generate the 3 x 3 covariance matrix before the 
Freeman-Durden decomposition was performed. 
The polarimetric Radarsat-2 data converted to the 
3 x 3 complex coherency matrix the polarimetric 
decompositions were orthorectified using the platform 
orbit information and digital elevation models derived 
from the SRTM version 4 with spatial resolution 90 m 
prior to further analyses. To further decrease speckle, 
the magnitude channels were speckle filtered using 

(1)

(2)

(3)

(4)

a 3 x 3 Gamma filter before classification. Finally 
the decomposition parameters were used for both 
the classification analysis and to evaluate the effect 
of growing phase changes. The block scheme of the 
proposed method is shown in Figure 3.

PolSAR measures the complex scattering matrix 
[S] in a linear (H:horizontal; V:vertical) polarization 
basis. The Sinclair scattering matrix [S] for each 
pixel in a PolSAR image is expressed as: Polarimetric 
decomposition of Radarsat-2 data were performed 
by decomposing a single polarization into matrix 
scattering [S] 2×2 followed by extraction of matrix 
coherency [T3]. In horizontal polarization (H) 
and vertical (V), the matrix scattering [S] could be 
expressed by:

For reciprocal backscaterring case,Shv=Svh, the 
matrix coherency [T3] could be expressed as 
follows: 			 

The Freeman decomposition expresses the 
measured covariance matrix C as follows:

Where Cv, Cd, and Cs are covariance matrix 
corresponding to each scattering component (volume, 
double, surface) as presented in Table 3. From these 
matrices, then the contributions of each scattering 
mechanisms Pv, Pd, Ps to the span (total power) P can 
be estimated. These scattered powers Pv, Pd, Ps, can 
be employed to generate RGB image and can be used 
as classification features to allow differentiation 
between different land cover types (Freeman and 
Durden 1998).

Figure 2. (a) The full and (b) single polarimetric SAR (PolSAR) images and illustration of their electromagnetic propagations
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Figure 3. Block scheme of the proposed method
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Where Shv=Svh, θ is the rotation 
angle from the vertical axis.

Double-bounce 
scattering

Dihedral corner reflector

Where the vertical trunk surface has 
reflection coeffi-cients RTH and RTV for 
horizontal and vertical polarizations. 
RGH and RGV are Fresnel reflection 
coefficients.               represent any 
propagation attenuation and phase 
change effects.

Surface or single-bounce 
scaterring

Bragg surface scatterer

where the RH and RV are Fresnel 
or reflection coefficients for 
horizontally and vertically po-
larized waves.

Where fscorresponds to the 
contribution of the single-bounce 
scattering to the total
|SVV |component, with 
fs=|SVV |2 and 

Table 3. Three basic scattering mechanism used in the Freeman decomposition model

Basic scaterring mechanism Model scatterer Corresponding covariance matrix
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3. Result

Time series in the scattering mechanisms in paddy 
region was investigated using an inte-grated approach 
involving visual analysis based on Freeman-Durden 

decomposition of the test sites. The Freeman-Durden 
polarimetric decomposition method was applied to 
the analysis of the PolSAR Radarsat-2 image, resulting 
in the maps in Figure 4 a-l which show the individual 
contribution of the double-bounce, volumetric, and 

Figure 4. (a-l) Images resulting from the Freeman-Durden decomposition method applied to the Radarsat-2 images, 
showing the intensity of the different mechanisms in the total backscattering
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surface scattering mecha-nisms such time series, 
respectively. The volumetric mechanisms presents 
the highest abso-lute values, followed by surface and 
double-bounce mechanisms.

Figure 5 a-d shows orthorectified Freeman–Durden 
decomposition images with the double-bounce 
shown in red, volume scattering in green, and surface 
scattering in blue. Volume scattering is dominant 
within the extensive areas of rice filed. The relative 
contribution of the different mechanisms to the 
reflected signal of each pixel can be better observed 
when an RGB combination is applied. The colors 
resulting from the combination of the R (double-
bounce—Pd ), G (volumetric—Pv), and B (surface—
Ps) mechanisms help to understand the relative 
importance of each mechanism in the backscattered 
response of the targets.

PolSAR imagery can be classified both with 
supervised and unsupervised methods. This research 
is to maintain an automatic process for reducing the 
human influence. We only focused using unsupervised 
approaches and in this section we provide a brief 
description of the used unsupervised classifiers. 
In order to understand the nature of the data and 
the behavior of growing phase, some baseline 
unsupervised polarimetric classifications have been 
implemented. The field data provided to this project 
shows that there are nine classes of interest and 
these classes is presented in Table 4. Based on final 
classification, each class is automatically assigned 
to a color, according to the predominant scattering 
mechanism blue (surface), green (volumetric), and 
red (double-bounce). The variation in the brightness 
of the tone of each color corresponds to the mean 

Figure 5. (a-d) Time series RGB combination of the scattering mechanisms derived from the Free-man-Durden for the 
Radarsat-2 images. R=double-bounce—Pd, G=volumetric—Pv, and B=surface—Ps
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Based on the field documentation shows that the 
beginning of planting a variety.

4. Discussion

Freeman–Durden decomposition in images 
separate (Figure 4 a-l)  which  the volumetric mecha-
nisms presents the highest absolute values in green 
color, followed by surface in blue color and double-
bounce mechanisms in red color. Its can be shown 
visually that on 18 June, double-bounce scattering 
high, then decreased until October 16. This condition 
indicates that there has been a change of growth phase 
from vegetative to reproductive phase until harvest/
after harvest. Volumetric mechanisms are available at 
all acquisition dates, this condition indicates which 
phase reproductive occurs for all acquisition dates 
while on for surface mechanisms from on 18 June until 
October 16 increased, indicates change of growing 
phase from seeding to germination.    

Based on Figure 5 a-d shows that the greenery color 
indicates the pixels in which volumetric com-ponent 
is predominant while red color indicates the pixels 
in which the double-bounce mechanism contributes 
to total response. In the areas in which the color blue 

potential of the class within growing phase (Figure 
6 a-d).

The phenological growth stages of these plant from 
the field survey in 2014 are summarized in Tables 5. 

Table 4. Classification based on scattering mechanism 
used in the freeman decomposition model

Classification of freeman 
decomposition

Low power contributions 
due to double-bounce
Medium power 
contributions due to 
double-bounce
High power contributions 
due to double-bounce
Low power contributions 
due to volume scattering
Medium power 
contributions due to 
volume scattering
High power contributions 
due to volume scattering
Low power contributions 
due to rough surface
Medium power 
contributions due to 
rough surface
High power contributions 
due to rough surface

Vegetative 1

Vegetative 2

Vegetative 3

Reproductive 1

Reproductive 2

Reproductive 3

Germination

Seeding

After Harvest

Classification of growing    
                 phase

Figure 6. (a-d) Classification of growing phase
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Table 5. Documentation of field for growing phase

Date Classification of freeman durden Classification of growing phase Documentation of field

June 18 Medium Power contributions due 
to double-bounce

Vegetative 2

June 18 Medium Power contributions due 
to double-bounce

Vegetative 2

June 18 High Power contributions due to 
rough surface

After Harvest

August 5 Medium Power contributions due 
to double-bounce

Vegetative 2

August 5 Medium Power contributions due 
to rough surface

Seeding

August 5 Medium Power contributions due 
to volume scattering

Reproductive 2

September 22 Medium Power contributions due 
to rough surface

Seeding

September 22 High Power contributions due to 
volume scattering

Reproductive 3

September 22 Low Power contributions due to 
volume scattering

Reproductive 1

October 16 Medium Power contributions due 
to rough surface

Seeding

October 16 High Power contributions due to 
rough surface

After Harvest

predominates, scattering component is primarily 
surface, whereas in the darkened areas, scattering 
is of the speculate type, indicating the presence of 
very smooth surfaces. In RGB composites was easier 
to analyze visually the growing phase of rice plant.

The decomposition method showed a high 
detectability for growing phase of rice. Result of 
the decomposition method is distinguished of 
backscattering characteristics from object on the 
surface in the form of surface scattering, double 
scattering, and volume scattering, that was then in 
the com-bined using RGB composite to R=double 
scattering, G=volume scattering, and B=surface 

scattering (Figure 5 a-d). This colour composite 
showed paddy field with clear boundaries. Boundaries 
of vegetative phase from decomposition results are 
shown with characteristics of the double bounce (red), 
boundaries of reproductive with characteristics of the 
volume (green) while boundaries of flooding/seeding 
with characteristics of the surface (blue).

Figure 6 a-d shows the Freeman-Durden 
classification image obtained from June 18 until 
October 16, 2014. While changes in extensive of 
rice growth phase can be shown in the Figure 7. On 
June 18, most fields are dominated by contributions 
from reproductive, germination and after harvest, 
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Figure 7.  Extensive of rice growth phase
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Figure 8. (a-f) The rough surface, double-bounce, and volume scattering parameters of the Freeman-Durden decomposition 
versus growing phase of rice plant
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as the plant condition in these fields were in 
various growth stages. On August 5, some fields 
dominated by reproductive 2. While September 22 
and October 16 some fields dominated by seeding. 
The results demonstrate that the temporal change of 
scattering mechanisms based on Free-man-Durden 
decomposition provides a useful way to visually 
distinguish different types of paddy growing phase 
by identifying the stages of their growth cycles. The 
overall accuracy for classification results was 77.27%.

The scattering mechanism of volume from the 
Freeman-Durden decomposition is generally stable 
throughout the growing season until harvest (Figure 
8 a-f). This is due to the rice canopy generating double 



bounce scattering during each growing phase. The 
double bounce starts very high but deceases as the 
canopy matures until a slight increase at harvest. 
The decrease in double bounce caused by the canopy 
increases reducing penetration to the surface and 
the double bounce off the water rice interface. The 
water level will decrease during the latter stages of 
rice development and lead to a decrease in the double 
bounce as some areas are wet soil rather than standing 
water.

After harvest, about 10 cm or more stubble is left 
in the fields. Farmers deliberately do flooding the 
fields to destroy the secondary plant growth. As a 
result, the flooded vertical stubble with the standing 
water surface can form a dihedral scatterer and cause 
increase the contribution of double bounce. When the 
surface scatter is low then gradually decreases during 
the rice growing season. There is a slight increase in 
surface scattering at harvest due to the wet soil and 
rice residue. These results suggest that the ratio of 
volume to double bounce scatter from the Freeman 
Durden decomposition can provide information 
related to the rice canopy and subsequently yield 
estimation using growth models.

Radarsat-2 were evaluated for mapping growing 
phase of rice plant, Indramayu district, West Java, 
Indonesia. Radarsat-2 images collected under 
ascending pass (east-looking) and incidence angle 
31.50°. Freeman and Durden successfully decomposed 
fully PolSAR data into three components: Single 
bounce, double bounce, and volume scattering. 
The three-component scattering provide features 
for distinguishing between different surface cover 
types. These sensitivities assist in the identification 
of growing phase. The observed growing phase 
development in time series, reflected in the consistent 
temporal trends in scattering, was generally in 
agreement with crop phenological development 
stages. The polarimetric analysis included target 
decompositions models Freeman-Durden as well 
as unsupervised classification Wishart-Freeman-
Durden. Time series analysis was applied to the 
Freeman surface, Freeman double-bounce, and 
Freeman volume backscatter intensities to monitor 
growing phase of rice plant from emergence to 
harvest. It has been found that Freeman double-
bounce and Freeman volume scattering intensities 
are strong indicators of crop growth development. 
These backscatter intensities are very low during 
emergence but rise significantly during the vegetative 
growth phase. In addition, several characteristics of 
the growth cycle, such as the time to reach a peak 
and the peak backscatter can be determined. Also, the 
ratio of the Freeman double-bounce and the Free-man 

volume components depends on growing phase. These 
sensitivities assist in the identification of growing 
phase. The observed growing phase development 
in time series, reflected in the consistent temporal 
trends in scattering, was generally in agreement 
with crop phenological development stages. 
Supervised classification was performed on repeat-
pass Radarsat-2 images, with an overall classification 
accuracy of 77.27% achieved using time series Fine 
beam data. The study demonstrated that Radarsat-2 
Fine mode data provide useful information for crop 
monitoring and classification of rice plant.
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