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 A B S T R A C T 
 

The impact of climate change on hydrometeorological hazards pointed out 

the necessity for information on rainfall data. Using Climate Hazard Group 

InfraRed Precipitation with Station (CHIRPS) data could solve the problem of 

the scarcity of observed rainfall data at a finer spatial resolution. This paper 

examines the performance of high-resolution rainfall climate model data 

called CORDEX SEA and NEXGDPP in the Ciliwung watershed, Indonesia. We 

used CHIRPS data as observed data, which was separately divided for 

calibration (1981-2005) and validation (2006-2020) of the climate models. 

Totally 14 climate models were used, comprised of 4 CORDEX and 10 

NEXGDPP. The models accuracy was assessed based on three statistical 

indicators: bias, mean absolute percentage error (MAPE), and mean square 

error (MSE). We determined the best model based on Taylor Diagram. The 

results showed that the bias value in the dry season was smaller than in the 

wet and transitional seasons. All models performed well as shown by the low 

bias values except for the ACCESS1-0 RCP8.5 model. The findings revealed 

that MRI-CGCM was the best model for calibration, whereas EC-Earth was the 

best model in the validation period for both RCP4.5 and RCP8.5 scenarios. 

Further, the choice of climate model may influence water resource 

management over watershed scale.  
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INTRODUCTION 

As the biggest equatorial archipelago country in 

the world, Indonesia is very vulnerable to climate 

change (Djalante, 2018; Paulus and Hindmarsh, 2018). 

Climate change affects various sectors in Indonesia, 

such as the economy, agriculture, infrastructure, and 

health, by increasing hydrometeorological disasters 

(floods, landslides, droughts, storms, and high sea 

waves). This will further decrease food production, 

increase damage to infrastructure and facilities, and 

cause loss of properties and life (Basuki et al., 2022; 

Mora et al., 2018; Noor and Maulud, 2022).  

The Ciliwung watershed is one of the critical 

watersheds in Java. Therefore, it is vulnerable to 

climate change. The upstream of the Ciliwung 

watershed experienced extreme events in the future, 

by an increased peak discharge up to 130% in 2030 

(Emam et al., 2016). In the downstream, such as in 

Jakarta, in 2050 the flood risk will increase by 322-

402% due to climate change, land use change, and 

land subsidence (Budiyono et al., 2016; Januriyadi et al., 

2018). The increased extreme rainfall will exacerbate 

the flood situation (Swain et al., 2020; Estiningtyas et 

al., 2009). Another study showed an increased flood 
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inundation in Jakarta by 6% (area) and 31% (depth) 

due to climate change (Mishra et al., 2018). 

Rainfall is an essential variable in the water 

supply-demand calculations. Thus, it is crucial for 

water resource management (Sharafatmandrad and 

Mashizi, 2021; Yu et al., 2022) and disaster mitigation 

(Dhanesh et al., 2020; Nuryanto et al., 2020), especially 

to predict the occurrence of flood and drought events. 

The accuracy of water resource assessment is affected 

by the limited monitoring of rainfall at a finer spatial 

resolution, as it is mostly not measured except in a few 

stations. (Bhaga et al., 2020). CHIRPS has an advantage 

in terms of resolution, both spatial (5 km) and 

temporal (daily) resolution, and the data has also been 

available since 1981 (Funk et al., 2015). In addition, 

CHIRPS has proven to be quite good at describing 

observational data in several regions with different 

climates (Dhanesh et al., 2020; Wiwoho et al., 2021). 

Furthermore, rainfall is also an essential variable in 

climate change studies (Konapala et al., 2020). 

Nowadays, there have been many studies of 

climate change impact on the increased extreme 

rainfall in Southeast Asia (Mandapaka and Lo, 2018; 

Raghavan et al., 2018; Supari et al., 2020; Tangang et 

al., 2018), which showed the necessity of high Climate 

 
Figure 1. The location of Ciliwung watershed in West 

Java, Indonesia as indicated by a red polygon. 

Model (RCM) output (Gutowski et al., 2020; Roberts et 

al., 2018). CORDEX SEA, as a consortium of several 

countries in the downscaling project, provides a model 

for regional climate prediction in the Southeast Asia 

region. Besides CORDEX, NEX-GDDP also provides the 

RCM data. Both CORDEX and NEX-GDDP data have a 

spatial resolution of 25 km at a daily temporal 

resolution.  

Yet, the RCM climate model results have a bias 

value, which will further cause significant unreliability 

in projected rainfall (Raghavan et al., 2018). 

Furthermore, this can lead to inaccuracies in projected 

data that will influence the policy’s decision making. 

Therefore, bias correction is required to minimize 

statistical bias in the output data (Racines et al., 2020). 

This study aims to test the reliability of high-

resolution climate model outputs by stochastic 

approach in representing rainfall conditions in the 

Ciliwung watershed. The statistical bias method in this 

study refers to the quantile mapping method, which 

relates the cumulative distribution function (CDF) 

values of rain observations and climate model 

(Inomata et al., 2011; Narulita et al., 2021; Racines et 

al., 2020). 

RESEARCH METHODS 

Data Source 

This study focused on the Ciliwung watershed, 

which is geographically located at 6°11´ - 6°46´ S and 

106°46´ - 107°00´ E (Figure 1). The watershed covers 

347 km2 with a river length of 117 km. Generally, the 

watershed is commonly divided into three parts based 

on the topography as upstream, middle, and 

downstream (Hermawan et al., 2019).  

This study used CHIRPS daily rainfall data 

(http://chg.geog.ucsb.edu/data/chirps/) and has been 

corrected by observational data from the 

Meteorological, Climatological, and Geophysical 

Agency (BMKG) station. As projected data, this study 

used CORDEX data, which is available from the Center 

for Research and Development of BMKG and NEX-

GDDP data, which is available from https://portal.nccs- 

.nasa.gov/datashare/ (Table 1). The available data was 

divided into two: the periods 1981-2005 for calibration 

and 2006-2020 for validation. The climate scenarios 

used during the validation period in this study were 

the RCP4.5 and RCP8.5 scenarios. 

Data Correction 

The corrected CHIRPS data was used to correct 

the RCM output data. The correction method used 

statistical bias correction based on the Quantile Map- 
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Table 1.  The climate models used in the research. 

Climate Models Abbreviation 

CORDEX 

Max Planck Institute for Meteorology MPI 

Centre National de Recherches Météorologiques CNRM-CM5 

EC-Earth consortium EC-Earth 

Commonwealth Scientific and Industrial Research Organisation CSIRO MK3.6 

NEXGDPP 

The Australian Community Climate and Earth System Simulator 

Coupled Model 
ACCESS1-0 

Beijing Climate Center Climate System Model BCC-CSM1-1 

Beijing Normal University Earth System Model BNU-ESM 

Canadian Center for Climate Modelling and Analysis CanESM2 

Community Climate System Model Version 4 CCSM4 

Community Earth System Model Biogeochemical Model CESM1-BGC 

Institute of Numerical Mathematics Climate Model INMCM4 

Model for Interdisciplinary Research on Climate-Earth System 

Model-Chemistry Component 
MIROC-ESM-CHEM 

Meteorological Research Institute coupled GCM MRI-CGCM 

The Norwegian Earth System Model NorESM1 

ping (QM). The QM method effectively eliminated bias 

between models and observations (Crochemore et al., 

2016) and increased the reliability of model forecasts 

to some extent (Zhao et al., 2017). The correction was 

made based on a modification of the Inomata 

correction method (Narulita et al., 2021), which 

ignored zero rainfall values or the number of no-rain 

days on the Cumulative Distribution Function (CDF). 

Modifications in this method were based on the 

consideration that zero rainfall represents all segments 

in the CDF, whereas it means a non-entity for bias 

correction. The probability of exceedance was used in 

this method, Non-Exceedance Probability (NEP) ≥ 95% 

and non-NEP > 99.5%. NEP ≥ 99.5% of the CDF curve 

represents the limited extremes and excludes only a 

few outliers. However, CDFs with NEP ≥ 95% represent 

much better extremes than time series data. 

The first step in this method was to calculate the 

correction factor for each quantile (αq, q = 0, 0.1, ..., 1) 

of the rainfall CDF, in which only non-zero rainfall 

values were used to construct the CDF. The correction 

coefficient was calculated between the corrected 

CHIRPS of the same rank and the RCM extremes 

extracted in the previous step (Equation 1). The 

calculation of the correction coefficient differentiated 

between extreme and non-extreme daily rainfall. The 

data segment with the largest 5% probability of all 

data was separated for extreme values. Next, extreme 

value correction coefficients were calculated for each 

quantile in this data segment. For non-extreme values, 

data was disaggregated and sorted monthly. Zero 

values of rainfall were excluded from the calculations. 

The coefficient of correction is the ratio of the 

corrected CHIRPS monthly non-extreme quantile value 

to the monthly RCM value. The obtained correction 

coefficient was applied to the RCM rainfall data 

between the rainfall value in a quantile and the value 

below it to get the corrected RCM value (Equation 2). 

aq =
R_CHIRPScorq

R_RCMq
    (1) 

aqm =
R_CHIRPScorqm

R_RCMqm
   (2) 

Where 𝑎𝑞 is the correction coefficient of the q-th 

quantile, R_CHIRPScoreq  is the corrected CHIRPS 

rainfall value in the q-th quantile, R_RCMqm is the RCM 

rainfall value in the q-th quantile. 

Model Assessments 

Verification and validation of the corrected model 

output data were needed to assess the model's 

accuracy. Statistical model accuracy was calculated 

based on bias values (Equation 3) (Mokhtari et al., 

2022), Mean Absolute Percentage Error (MAPE) 

(Equation 4), and Mean Square Error (MSE) (Equation 

5). The model bias was also analyzed for each season, 

where December-January-February (DJF) is the wet 

month and June-July-August (JJA) is the dry month. 

The months of March-April-May (MAM) and 

September-October-November (SON) are included in 

the transition season. 

The lower of bias, MSE, and MAPE values, the 

better of model accuracy and capability (Table 2).  

bias =  
∑ (Obsi−Simi)n

i=1

n
   (3) 

MSE =  
∑ [Obs−Sim]2n

i=1

n
   (4) 

MAPE =
∑ |(

Obs−Sim

Obs
)100|n

t=1

n
   (5) 

Visually, the best model performance was 

determined by Taylor diagrams. The Taylor diagram  
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Figure 2. Daily mean rainfall of model and CHIRPS data (a) before and (b) after bias correction for 1981-2005. 

serves to simplify how good the model was based on 

the correlation value (R), root-mean-square (RMSE), 

and standard deviation (Taylor, 2001). This diagram 

illustrates the performance of the model as well as the 

model performance ranking method (Handoko et al., 

2019). 

Table 2. The Mean Absolute Percentage Error (MAPE) 

criteria (Baykal et al., 2022). 

MAPE Criteria 

<10% Highly accurate 

10-20% Good 

20-50% Reasonable 

>50% Weak and inaccurate 

RESULTS AND DISCUSSION 

Historical Period (Calibration) 

Before the bias correction, a comparison of 

observed daily average rainfall data from 1981-2005 

with RCM rainfall data shows that the RCM data have 

significant variations (Figure 2a). During wet months, 

several CORDEX RCM models tended to have higher 

values than observations, including EC-Earth, CNRM-

CM5, CSIRO MK3.6, and MPI. Conversely, during dry 

months, especially for the CNRM-CM5 model, the 

average daily rainfall was lower than the observed 

value. The highest observed daily average rainfall of 

17.2 mm occurred on February 7th, while the highest 

rainfall from the RCM ranged from 15.7 – 32.1 mm. The 

highest value was the output of the EC-Earth model on 

December 10th. 

The high rainfall variation of climate model 

output was also evident in the monthly average rainfall 

before correction (Figure 3a). Similar to the daily 

average rainfall, the four RCM CORDEX models 

produced higher rainfall than the observed rainfall, 

especially during the wet months. The maximum and 

minimum observed monthly average rainfall was 

recorded at 347.5 mm in January and 110.3 mm in July. 

The EC-Earth model has the highest monthly average 

rainfall compared to other climate models, with 671.5 

mm in November. In contrast, the minimum monthly 

average rainfall of 45.3 mm was produced by the 

CNRM-CM5 model in June. 

The results of the statistical bias correction 

produced corrected rainfall values, which were close to 

observations, both daily average rainfall (Figure 2b) 

and monthly average rainfall (Figure 3b). Before the 

bias correction, the mean and standard deviation of 

the average daily rainfall of the RCM ranged from 7.1 

– 12.5 mm and 3.1 – 6.5 mm. While the average value 

and standard deviation of the daily average rainfall 

CHIRPS ranged from 7.1 – 7.6 mm and 3.1 – 3.9 mm 

per day. The close of the standard deviation value 

between the observation and model data indicated 

that both have a similar pattern. The corrected 

maximum daily average rainfall ranged from 15.6 – 

22.6 mm, where the CanESM2 model produced the 

highest maximum rainfall on May 3rd. Meanwhile, the 

maximum monthly average rainfall ranged from 314.5 

– 382.3 mm. 

Based on statistical parameters, negative bias 

values for all CORDEX RCM before correction indicated 

that the model was overestimated (Table 3). In contrast, 

the NEXGDPP RCM model produced underestimated 

rainfall values except for the CESM-BGC and INMCM4 

models. While seasonally, bias values indicated that 

the RCM CORDEX was overestimated in each season 

before the correction process, except for the CNRM 

model in the dry season with a bias of 1.5 mm (Figure 

4). 

Yet, the RCM NEXGDPP rainfall was overesti-

mated in the wet season and underestimated in the 

dry and transitional seasons. The model correction by 

adjusting the CDF value could reduce the rainfall bias 

up to 5.1 mm. Based on the MAPE value, statistical bias

(a) (b) 
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Figure 3. Monthly mean rainfall of model and CHIRPS data period 1981-2005 (a) before and (b) after bias correction. 

correction also improved the performance of the 

CORDEX models (CNRM-CM5, CSIRO MK3.6, EC-Earth, 

and MPI) from the weak to the decent category. 

Current Period (Validation) 

Similar to the calibration period, the uncorrected 

RCM CORDEX rainfall during the validation period 

(2006 - 2020) tended to overestimate. Both RCP 4.5 

and RCP 8.5 scenarios (Figure 5) resulted in high 

rainfall. In contrast, the RCM NEXGDPP average daily 

rainfall tended to be underestimated compared to the 

observation data, except for the ACCESS1-0 RCP8.5 

model. The observed average daily rainfall had the 

highest value on November 29th at 18.5 mm for 15 

years. The ACCESS1-0 model's output rainfall reached 

a maximum value on January 20th of 74.9 mm. This 

value was much greater than other models' average 

daily rainfall value. Monthly average rainfall also 

tended to be overestimated and has high fluctuations, 

especially detected in the RCM CORDEX output rainfall 

for RCP4.5, namely: CNRM-CM5, CSIRO MK3.6, EC-

Earth, and MPI. Specifically, the CNRM-CM5 model 

was overestimated in the wet season. 

Statistical bias correction for the daily rainfall of 

the climate model in the validation period resulted in 

a relative value to the observed rainfall (Figure 5b and 

Figure 5d). However, the bias correction has not 

improved the ACCESS1-0 RCP8.5 daily rainfall. On the 

other hand, the average daily rainfall value has 

increased several times. Similar to the daily rainfall, the 

bias correction for the monthly rainfall increased the 

model performance, except for the ACCESS1-0 RCP8.5 

model (Figure 5d). In January, the observed average 

monthly rainfall was 353.9 mm, while the ACCESS1-0 

model’s average monthly rainfall before correction 

reached 726.1 mm and increased to 800.6 mm after 

the bias correction. 

The statistical parameters between the observed 

daily rainfall and the model’s daily rainfall showed that 

the bias correction increased the model’s performance 

(Table A1). The bias values of the output rainfall for the 

climate models RCP4.5 and RCP8.5 decreased by 4.5 

mm and 4.8 mm, respectively. Yet, the bias value in the

Table 3. Comparison of statistical parameters between daily mean observed rainfall and historical RCM. 

Model 
Before Correction After Correction 

bias MAPE MSE bias MAPE MSE 

CORDEX 

CNRM -1.95 57.16 25.77 0.28 37.02 7.52 

CSIRO -2.56 56.16 20.1 -0.03 34.7 6.46 

ECEarth -5.02 97.34 55.46 0.07 39.77 6.95 

MPI -4.82 89.04 41.05 -0.02 33.61 6.4 

NEX-GDPP 

ACCESS 0.11 38.96 6.98 0.15 37.27 7.1 

BCC 0.05 40.18 7.58 0.04 41.78 8.26 

BNU-ESM 0.23 36.57 7.33 0.03 39 8.01 

CanESM2 0.18 38.66 9.2 0.1 39.25 9.85 

CCSM4 0.06 36.75 8.06 0.25 35.07 7.27 

CESM1-BGC -0.09 36.61 8.1 0.22 36.14 7.53 

INMCM4 -0.22 44.56 10.01 0.12 42.43 9.12 

MIROC 0.24 35.57 7.18 0.01 39.46 7.5 

MRI-CGCM 0.4 39.05 7.4 0.36 36.98 6.49 

NorESM1 0.22 34.98 6.79 -0.02 36.64 7.87 
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Figure 4.  Seasonal bias values for CHIRPS data based on historical period for different RCM.

RCP4.5 scenario of the CESM-BGC and INMCM4 

models has increased. This bias increase also occurred 

in the RCP 8.5 climate scenario for several climate 

models, including ACCESS1-0, CESM-BGC, MIROC-

ESM-CHEM, and NorESM1-M. It was strengthened by 

most of the NEXGDPP RCM output MSE values 

increased after the bias correction. Nevertheless, the 

MSE of RCM CORDEX, namely CNRM-CM5, CSIRO 

MK3.6, EC-Earth, and MPI, decreased in both the 

RCP4.5 and RCP8.5 climate scenarios. 

The negative bias values based on the RCM 

CORDEX seasonally showed that most models were 

overestimated each season (Figure A1). Conversely, the 

positive bias value was obtained for the CNRM model 

in dry months, both RCP4.5 and RCP8.5 scenarios 

(Figure A1c) and the transitional month of SON 

scenario RCP4.5 (Figure A1d). Most of the NEXGDPP 

RCM bias was positive in the wet and dry seasons, 

indicating that the model rainfall was mainly 

underestimated. During the transitional season, 

especially during the MAM, most of the NEXGDPP 

models were overestimated, while during the SON 

month, all models were underestimated. During the dry 

season, the bias values of all RCM models, both 

CORDEX and NEXGDPP, were smaller than the bias 

values in the wet and transitional seasons. In addition, 

bias correction improved model performance 

significantly for the CORDEX RCM. On the other hand, 

the performance of the NEXGDPP RCM after correction 

did not show a significant improvement. 

The Model Comparison 

The performance of the corrected RCM models 

was mathematically illustrated by a Taylor diagram (Fi- 

gure 7). The best model will be located closest to the 

observation. Based on the proximity of the Taylor 

diagram to the calibration period, the CSIRO MK3.6, 

MPI, and MRI-CGCM3 models performed equally well. 

The three models have almost the same correlation to 

the observation of 0.7. Nevertheless, the MRI-CGCM 

model has the smallest RMSE values and standard 

deviations, 3.5 mm, and 2.5 mm. Therefore, the MRI-

CGCM3 model was determined to have the best 

performance in the calibration period. In the validation 

period, both the RCP4.5 and RCP8.5 scenarios showed 

that the EC-Earth model has the best performance 

(Figure 6). 

Each RCM has its characteristics. This caused 

different patterns of variation, both daily and monthly 

rainfall. The Ciliwung Watershed has a monsoonal 

pattern climate with one peak rainy season. This was 

clearly illustrated in the daily (Figure 2 and Figure 5) and 

monthly mean rainfall patterns (Figure 3 and Figure 6). 

However, there was a difference in magnitude between 

the RCM output and the observed rainfall. Same to the 

previous study by Raghavan et al., (2018), the NEXGDPP 

monthly rainfall over the calibration period has a good 

fit. Yet, this was not the case in the validation period, 

especially for RCM ACCESS1-0 for the RCP8.5 scenario. 

Bias correction with the QM method effectively 

reduced the RCM bias value. All RCM outputs in the 

calibration period, especially CORDEX experienced 

significant performance improvement after the bias 

correction. Only the CCSM4 model has an increased 

bias value. Based on the MAPE value, all models in the 

calibration period was in the feasible category. Yet, the 

feasibility of the model during the validation period has 

largely declined after the bias correction. Only the 

ACCESS1-0, CNRM-CM5, EC-Earth, MPI, and NorESM1
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Figure 5. Comparison of daily observed CHIRPS rainfall with (a) the RCP4.5 before, (b) RCP8.5 before, (c) RCP4.5 after, 

and (d) RCP8.5 after bias correction for 2006-2020. 

         

         

Figure 6. Comparison of monthly observed CHIRPS rainfall with (a) the RCP4.5 before, (b) RCP8.5 before, (c) RCP4.5 

after, and (d) RCP8.5 after bias correction for 2006-2020.
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Figure 7.  Taylor diagram of rainfall for (a) the RCP4.5 and (b) the RCP8.5 after correction. 

 

models were eligible for scenario RCP4.5, while the 

BNU, CanESSM, CESM-BGC, CNRM-CM5, EC-Earth, 

MPI, and MRI-CGCM for the RCP8.5 scenario. In 

addition, the NEXGDPP RCM MSE value also tended to 

increase in this period. This showed that bias in the 

calibration period contributed to the large unreliability 

of projected rainfall values. Raghavan et al., (2018) and 

Maraun and Widmann, (2018) even stated that the 

validation process may have incorrect results. However, 

the bias correction results reflected the dynamics or 

internal variations of the RCM. Furthermore, Hall et al., 

(2019), analyzed the relationship of emerging 

constraints (EC) with observational data to reduce the 

unreliability of future climate models. 

Based on the Taylor diagram, the model with the 

best performance for each period was different. During 

the calibration period, the best performance was MRI-

CGCM, while EC-Earth was for the validation period. 

Furthermore, the RCM CORDEX rainfall was 

overestimated during the rainy season and 

underestimated during the dry season (Figure 2). It was 

because RCM has several factors that influence the 

output, including the variability of internal methods, 

regional or site studies, approaches, and downscaling 

configurations from the global model (GCM) to the 

regional model (RCM) (Gutowski et al., 2020), scenarios 

climate used (Deser et al., 2020), and as well known, the 

parameterization of each GCM model was built with 

different schemes, both microphysical, radiation, 

turbulence, and convective parameterization. Each of 

these parameterizations has a major influence on the 

resulting model output (Donahue and Caldwell, 2018). 

RCM faced different challenges in every different 

driving factor (Djuwansah et al., 2021). For example, a 

past study on the Batanghari watershed showed 

ACCESS1-0 was the best model (Handoko et al., 2019). 

This was in contrast to the results of this study, where 

ACCESS1-0 has very poor performance, especially for 

the RCP8.5 scenario. On the other hand, the seasons 

also affected the bias value (Kerkhoff et al., 2014).  

CONCLUSIONS 

The magnitude of daily and monthly rainfall data 

observed by CHIRPS tends to be lower than RCM 

CORDEX rainfall, while it is higher than NEX-GDPP 

rainfall. This indicates a bias between the observational 

data and the model. The bias values of all RCM models, 

both CORDEX and NEXGDPP in dry season are smaller 

the bias values in wet and transitional seasons. The 

model results were corrected using statistical bias 

correction, which showed a good enough result for 

most models except ACCESS1-0 RCP8.5. Bias correction 

using the QM method can reduce the model's rainfall 

bias up to 5.1 mm, 4.5 mm, and 4.8 mm in the 

calibration and validation periods of RCP4.5 and 

RCP8.5. The inaccuracy of performance between 

calibration and validation periods indicates that the 

validation process needs to be addressed. Based on the 

Taylor diagram, the model with the best performance 

in the historical period is the MRI-CGCM with the RMSE 

values and the smallest standard deviations of 3.5 mm 

and 2.5 mm. In the current period, for both RCP4.5 and 

RCP8.5 scenarios, EC-Earth is the best model. 
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ANNEX 

Table A1. Statistical parameters between daily mean observed rainfall and RCM output before and after bias 

correction in the 2006-2020 period for RCP 4.5 (top panel) and RCP 8.5 (below panel). 

Model 

RCP4.5 

Before After 

Bias MAPE MSE Bias MAPE MSE 

CORDEX 

CNRM -1.36 56.2 25.77 0.66 43.6 12.32 

CSIRO -3.67 80.62 31.39 -1.29 54.34 18.04 

ECEarth -3.52 82.64 37.96 0.97 49.51 12.91 

MPI -3.75 75.09 37.83 0.31 45.22 13.06 

NEX-GDPP 

ACCESS 1.29 45.27 15.74 0.98 48.99 16.22 

BCC 0.27 46.3 13.24 0.22 50.45 15.42 

BNU-ESM 0.56 43.79 13.92 0.36 50.26 16.64 

CanESM2 0.37 47.79 14.53 -0.26 56.82 19.06 

CCSM4 0.6 45.99 13.9 0.54 50.24 15.1 

CESM1-BGC 0.41 50.96 15.08 0.57 54.41 15.92 

INMCM4 -0.09 60.32 17.88 -0.99 68.14 23.06 

MIROC 0.39 46.31 12.23 -0.2 59.7 16.56 

MRI-CGCM 0.76 49.16 14.77 0.18 54.26 16.56 

NorESM1 0.53 41.57 12.11 0.13 46.9 15.31 

        

Model 

RCP8.5 

Before After 

Bias MAPE MSE Bias MAPE MSE 

CORDEX 

CNRM -1.85 57.59 26.53 0.14 47.11 13.2 

CSIRO -3.67 80.62 31.39 -1.29 54.34 18.04 

ECEarth -4.09 88.52 48.48 0.75 45.63 12.01 

MPI -4.45 90.07 45.21 -0.05 49.18 15.72 

NEX-GDPP 

ACCESS -5.78 136.4 213.37 -6.73 159.25 254.35 

BCC 0.25 46.24 12.81 0.14 51.98 15.1 

BNU-ESM 0.53 43.65 12.84 0.32 49.65 14.1 

CanESM2 0.74 40.17 11.89 -0.03 49.73 15.21 

CCSM4 0.4 49.06 15.65 0.3 55.41 17.41 

CESM1-BGC 0.81 44.27 14.21 0.92 46.48 14.84 

INMCM4 0.6 49.03 13.46 -0.35 56.8 16.24 

MIROC 0.05 45.9 13.53 -0.63 57.42 17.51 

MRI-CGCM 0.94 41.97 12.51 0.28 48.36 13.45 

NorESM1 -0.46 51.97 13.87 -0.83 56.6 19.61 
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Figure A1.  Statistical parameters between daily mean observed rainfall and RCM output before and after bias 

correction in the 2006-2020 period.  
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