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 A B S T R A C T 

Jambi covers various land uses with different characteristics related to 

biogeophysical cycle. Land use plays an important role in the atmosphere-

surface interaction and energy balance partition, which influenced rainfall 

pattern. Two proxies widely used to differentiate various land uses are albedo 

and normalized difference vegetation index (NDVI). However, study on 

albedo and NDVI relationship with rainfall in Jambi is still limited. This study 

aims to analyze the correlation of NDVI and albedo with rainfall and their 

distribution in Jambi and Muaro Jambi in 2013 and 2017. The research used 

Landsat 8 OLI TIRS satellite image data to derived NDVI and albedo, and 

CHIRPS data for rainfall. A simple linear regression was used to calculate the 

correlation of NDVI and albedo with rainfall. The results showed that the 

distribution of albedo for each land use class from the lowest to the highest 

was forest, plantation, cropland, shrubs, and settlements, respectively. On the 

contrary, the distribution of NDVI and rainfall is the inverse to albedo. Albedo 

and NDVI had a strong influence on rainfall through surface energy balance 

partition. This was indicated by the high R-square between albedo and rainfall 

(0.99) and between NDVI and rainfall (0.97). Increasing upward latent heat 

flux from the land surface to atmosphere leads to a rainfall increase. In other 

words, rainfall may also increase with the decrease in albedo, increase in 

NDVI, or land use change. 
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INTRODUCTION 

Land use plays an important role on the surface 

biogeophysical cycle. Each land use class has specific 

surface biophysical characteristics such as albedo, leaf 

area index (LAI), and surface roughness (Burakowski 

et al., 2018). These biophysical characteristics affect as 

the surface energy balance, water balance, and carbon 

cycle (Winckler et al., 2019). Surface energy partition 

and water balance control the condition of the atmos-

phere such as boundary layer depth, dynamic air flow, 

and cloud formation, which also led to rainfall (Fast et 

al., 2019).  

Jambi Province covers an area of 53,435 km2 

with a large proportion of vegetation and forest (June 

et al., 2018b). It has a high annual rainfall (2500-4000 

mm/year) with a monsoonal rainfall pattern. The wet 

season is in October-April, and the dry season is in 

June-August. However, there was a decreasing trend 

in the total area of forest (Rustiadi et al., 2018). Jambi 

Environmental Agency (BLHD 2018), reported that 

366,964 ha of forest have been converted to other 

uses. Another research in the eastern lowland of 

Sumatra including Jambi, which has extensive coastal 

peatlands, revealed that there was a very high annual 

deforestation rate (Miettinen et al., 2011). This 

decreasing trend will influence the distribution of land 

use, which in turn may also alter the biogeophysical 

process in the land surface.  

Previous findings in a high latitude forest 

revealed that increased deforestation rate or 

decreased NDVI will lead to increased albedo (Fusami 

et al., 2020; Scott et al., 2018). Research in tropical 

forest also reported that deforestation resulted in 

https://doi.org/10.29244/j.agromet.36.1.51-59
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decreased NDVI (Othman et al., 2018). In addition, 

Leite-Filho et al., (2021) stated that decreased eva-

potranspiration and rainfall pattern change in the 

Amazon Forest was caused by deforestation. From 

those studies, it is assumed that normalized difference 

vegetation index (NDVI) score can represent various 

land use class. NDVI was calculated from a mathe-

matical equation using the red band and the NIR band 

in satellite data such as Landsat 8 OLI TIRS to indicate 

the presence of vegetation cover. This index is mainly 

influenced by land area covered by vegetation and the 

canopy density. NDVI may represent Leaf Area Index 

(LAI), a parameter to calculate plant maximum evapo-

transpiration and local rainfall (Oliveira et al., 2018). 

Therefore, this study aims to analyze the correlation 

between albedo and NDVI with rainfall and their 

distribution in various land use. This study also 

analyzed the effect of land use change and its 

implication to rainfall pattern in Jambi. 

RESEARCH METHODS 

Research Site 

The research site was carried out in Muaro 

Jambi Regency and Jambi City. Land use class in the 

research site was based on Ministry of Forestry and 

Environment, Republic of Indonesia (2017). This 

classification was further grouped as forest, plantation, 

cropland, shrubs, and settlements. Secondary dryland 

forest, primary mangrove forest, secondary mangrove 

forest, primary swamp forest, secondary swamp forest, 

and plantation forest were grouped as forest. Plan-

tation, cropland, and dryland farming were grouped 

as cropland. Swamp, savanna, rice field, shrub swamp, 

and shrubs were grouped as shrubs. Lastly, open field, 

built-up land, mines, and settlements were grouped 

as settlement. 

 

Data Source 

The data used in this study consisted of satellite 

data from Landsat-8 OLI TIRS, rainfall data from 

Climate Hazards Group InfraRed Rainfall with Station 

(CHIRPS) and OGIMET, and land cover map from 

Ministry of Forestry and Environment Indonesia (2013 

& 2017). The satellite data from Landsat-8 OLI-TIRS 

(path/row 125/61 in 2013 and January 2017) had a 

spatial resolution of 30 m and temporal resolution of 

16 days. This data was used to calculate surface albedo 

and LAI. The rainfall data used from CHRIPS was 

monthly rainfall in January 2013 and 2017 with a 

spatial resolution of 5 km. January is considered as wet 

month with rainfall amount >200 mm. Monthly rainfall 

station data in January 2013 and 2017 obtained from 

OGIMET was used to validate CHIRPS data. The 

meteorological station selected was Sultan Thaha 

Meteorological Station. Land cover map from Ministry 

of Forestry and Environment in 2013 and 2017 was 

used to describe land use distribution in the research 

site. 

Preprocessing of Satellite Image Data 

Landsat-8 satellite data was retrieved and 

geometrically corrected using Google Earth Engine 

(GEE). Afterwards, top of atmosphere (ToA) reflectance 

was corrected using radiometric correction (Yanuar et 

al., 2018), as shown in Equation 1. 

𝜆′ =  Mρ𝑄𝑐𝑎𝑙 + 𝐴ρ    (1) 

Where ρλ' is ToA reflectance, Mρ is 

reflectance_mult_band_x, Aρ is reflectance_add_band_ 

x, and Qcal is the digital number stored in the 

metadata. 

The value of digital number due to the sun 

position was corrected using ToA reflectance with the 

angle of the sun (Yanuar et al., 2018), as shown in 

Equation 2. 

ρλ =  
ρλ′

cos (𝜃𝑆𝑍)
=  

ρλ′

sin(𝜃𝑆𝐸)
    (2) 

 
Figure 1. Proportion of land cover class in the study site in 2013 and 2017 

https://earthengine.google.com/
https://iridl.ldeo.columbia.edu/
https://www.ogimet.com/
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Figure 2. Distribution of albedo for each land cover class in the study site in a) 2013 and b) 2017

Where ρλ is ToA reflectance, θSE is the sun's elevation 

angle, and θSZ is the sun's zenith angle. 

Spatial Processing of Albedo 

To calculate surface albedo from Landsat-8 

satellite imagery data, ToA reflectance of band 1, band 

3, band 4, band 5, and band 7 is used. Equation 3 is the 

modified formula to calculate albedo using Landsat 8 

from its previous version of Landsat 7 (Liang et al., 

2003). 

𝛼 =  
0.356𝜌1+0.130𝜌3+0.373𝜌4+0.085𝜌5+0.072𝜌7−0.0018

0.356+0.130+0.373+0.085+0.072
 (3) 

Where ρ is the ToA reflectance of the specified band. 

Normalized Difference Vegetation Index 

NDVI is a widely used method to show 

differences in vegetation density in the land surface 

(Artikanur and June, 2019). Spectral bands used to 

calculate NDVI in Landsat 8 are band 5 (near infrared) 

and 4 (red) as formulated in Equation 4 (Jensen and 

Lulla, 1987). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
   (4) 

Heat Fluxes  

Sensible heat (H) and latent heat (LE) fluxes are 

calculated using the energy balance (Rn) concept and 

Bowen ratio (𝛽) method as formulated in Equation 5 

and 6. 

𝐻 =  
𝛽 (𝑅𝑛 − 𝐺 )

(𝛽+1)
   (5) 

𝐿𝐸 =  
(𝑅𝑛 − 𝐺 )

(𝛽+1)
   (6) 

Where Rn is net radiation, G is soil heat flux, and β is 

Bowen ratio. 

Rainfall Analysis 

This study used monthly rainfall of January in 

2013 and 2017. The first step to be carried out was 

rainfall bias correction. The correction was performed 

using the average ratio method (Lenderink et al., 

2007), as shown in Equation 5. 

𝑃 ∗ 𝑚𝑜𝑑𝑒𝑙 = 𝑃𝑚𝑜𝑑𝑒𝑙 ×
µ𝑚 𝑃 𝑜𝑏𝑠

µ𝑚 𝑃𝑚𝑜𝑑𝑒𝑙
   (7) 

Where Pmodel is rainfall data from CHIRPS, µm Pobs is the 

mean monthly rainfall of observations, and µm Pmodel 

is the average monthly rainfall of CHIRPS. 

Correlation Analysis 

Relationship between NDVI, albedo, and rainfall 

was analyzed using a simple linear regression. The 

equation of simple linear regression model was shown 

in Equation 6. 

𝑌  =  𝛼+ 𝛽𝑋 + 𝜀       (8) 

Where Y is the dependent variable that is rainfall, X is 

the independent variable that is albedo and NDVI, 𝜀 is 

the error, and 𝛼 is the regression parameter. Then T 

test and assumption test (normal test, homogeneity 

test of variance, and independent residual test) were 

carried out on the regression model.
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Figure 3.  Distribution of NDVI for each land cover class in the study site in a) 2013 and b) 2017 

RESULTS AND DISCUSSION 

Land Use Types in the Study Area 

Muaro Jambi and Jambi City covers an 

extensive land use area of agriculture, plantation, 

forest, shrub, and settlement. Cropland had the largest 

proportion in Muaro Jambi, which ranges from 33.05% 

of the total area in 2013 to 31.93% in 2017 (Figure 1). 

Mostly, agricultural crops cultivated in Muaro Jambi 

consists of horticultural crops and seasonal or annual 

fruit crops (BPS 2018). After cropland, plantation for 

rubber, oil palm, coffee, cocoa, and areca nut had the 

second-largest proportion in the region (BPS, 2018). 

Figure 1 also showed that there was a slight difference 

between proportion of each land use in 2013 and 

2017, indicating land use change. Forest area decrea-

 
Figure 4. Distribution of sensible heat (H) in a) 2013 and b) 2017, and latent heat (LE) in c) 2013 and d) 2017 for each 

land cover class in the study site
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Figure 5. Distribution of monthly rainfall for each land cover class in the study site in a) 2013 and b) 2017

sed by 8.76%, followed by cropland (1.12%) and shrubs 

(0.6%). On the other hand, plantation and settlement 

area increased by 2.96% and 7.84%, respectively. 

According to Sabajo et al., (2017), the forest area was 

mostly converted due to the expansion of plantation.  

This was also supported by Rustiadi et al., (2018), who 

stated that plantation, especially oil palm plantation, 

may support the economy and provide employment 

for local communities, hence why the expansion 

occurred rapidly. 

Distribution of Surface Albedo 

Both in 2013 and 2017, settlement had the 

largest value range of albedo, along with an increase 

in its standard deviation. The large albedo value range 

was due to various distinct surface characteristics 

covered by the settlement class. Albedo mainly in-

fluenced by colour, texture, and wetness of an object. 

Thus, surface heterogeneity will result in a more varied 

albedo value.  According to BPS (2018), settlement in 

Jambi consisted of road, building, farm area, industrial 

site, and transportation infrastructure. Land with 

vegetation cover, including forest, plantation, crop-

land, and shrub had an overall lower albedo compared 

to settlement and relatively smaller albedo value range 

(Figure 2). These land cover classes cover a more 

homogenous surface with similar characteristics. forest 

had the lowest albedo compared to the other land 

cover classes because of dense vegetation covering 

the surface. Cropland and shrub classes have a higher 

albedo than forest and plantation because the 

vegetation cover was less dense. Low albedo value 

implied that the surface absorbs more solar radiation 

than it reflects.  

Distribution of NDVI 

The distribution pattern of NDVI was inversely 

proportional to albedo (Figure 3). According to 

Artikanur and June (2019), a direct inversed relation-

ship between albedo and LAI affects the NDVI value. 

Forest had the highest NDVI value, followed by 

plantation, agriculture, shrubs, and settlement, res-

pectively. This was in line with Zaitunah et al., (2018), 

who reported that settlement especially in urban area 

had low NDVI values. Similar to previous results in 

albedo distribution, the settlement had the highest 

standard deviation of NDVI in 2013 and 2017. A high 

NDVI standard deviation indicated the diversity of red 

and infrared wavelength reflectance from the surface. 

This due to the same cause as in albedo, which is 

surface heterogeneity. In addition, there were also 

built-up lands in Muaro Jambi, which was surrounded 

by plantations or cropland (BPS, 2018), resulting in the 

diversity of the surface reflectance.  

Distribution of Sensible Heat (H) and Latent Heat 

(LE) Fluxes 

Sensible heat (H) distribution was inversely 

proportional to latent heat (LE) (Figure 4).  A highly ve- 
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Figure 6. Correlation of rainfall and a) albedo and b) NDVI in the study site in 2013 and 2017

getated area (indicated by high NDVI value in Figure 

3) will have a lower H value and higher LE value 

compared to less vegetated area. Accordingly, settle-

ment had the highest H and lowest LE, followed by 

shrubs, cropland, plantation, and forest (Figure 4). The 

increasing rate of latent heat flux was recorded higher 

than increasing rate of sensible heat flux, in line with 

(Zeng and Zhang, 2020). However, the average value 

of H and LE were both increased in 2017 compared to 

2013 (Figure 4). Similar to previous results, land use 

also plays a major role in altering this partitioning of 

latent heat and sensible heat fluxes (de Oliveira et al., 

2019).  The vegetation cover affects how the surface 

manage water vapor. Increasing upward latent heat 

flux from the land surface to atmosphere leads to a 

rainfall increase. In a highly vegetated area where 

upward latent heat flux is also high, there will be higher 

chance of low clouds formation, associated with 

increased evapotranspiration (de Oliveira et al., 2019).  

Distribution of Rainfall 

The rainfall distribution pattern was the same as 

NDVI. High NDVI score may indicate a dense canopy, 

causing high evapotranspiration from the surface that 

contributes to increased water vapour in the atmos-

phere. In this study, highest rainfall occurred in forest. 

This was also supported by previous analysis con-

ducted in tropical region by Deb et al., (2018), who 

reported that in both wet and dry seasons, highest 

total rainfall was in forest. Besides having high NDVI 

leading to high evapotranspiration, forest also had 

lowest albedo. Low albedo indicated high absorption 

of solar radiation resulting in high available energy.  

Since forest had higher soil moisture than other 

land cover classes, most available energy will be 

partitioned into latent heat flux rather than sensible 

heat flux. Latent heat flux can increase water vapour in 

the atmosphere, which later accelerate the convective 

cloud formation (Takahashi et al., 2017). In addition, 

forest also has high surface roughness that can 

increase turbulence. Turbulence can transfer energy 

from the surface to the atmosphere, leaving the 

surface to be colder. The available energy will mostly 

be used for evaporation rather than warming up the 

surface, resulting in lower surface temperature (Fast et 

al., 2019). On the contrary, low vegetated area such as 

settlement led to high surface temperature because 

most of the energy will be used to warm up the surface 

rather than for evaporation. Low evaporation will delay 

cloud formation because of limited water mass and 

cold pools (Fast et al., 2019). 

High surface temperature in the settlement 

created a low-pressure area thus water vapour from 

the surrounding vegetated area will be transported 

into the settlement. This caused spatial variation of 

rainfall in the settlement, in accordance with Sabajo et 

al., (2017) who revealed that high variation in surface 

temperature lowlands was due to higher NDVI and 

lower albedo. There was a flow of moist air from the 

surrounding vegetated area in the lowland, which has 

a lower temperature and higher air pressure. This 

resulted in variations in rainfall on high built-up land. 
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Correlation of Albedo and NDVI with Rainfall 

The correlation of albedo and NDVI with rainfall 

in 2013 and 2017 is presented in Figure 5. Albedo and 

rainfall had an inversed relationship, meaning that low 

albedo caused high rainfall and vice versa. In contrast, 

NDVI and rainfall had a linear relationship, meaning 

that high NDVI caused high rainfall and vice versa. The 

coefficient of determination (R2) between albedo and 

rainfall was lower in 2013 (0.86) than in 2017 (0.99). 

Similarly, the R2 of NDVI and rainfall was also lower in 

2013 (0.93) than in 2017 (0.97). A T-test with p-value 

of 0.02 implied that there is a relationship between 

albedo and rainfall. For the normal test, p-value is 0.15 

implied that the remainder is normally distributed. The 

homogeneity test of variance is 0.54, indicated homo-

geneous residual variance. The independent residual 

test is 0.12, implied independent residual. Therefore, it 

was presumed that the regression model had met all 

assumptions, and that there was a relationship bet-

ween albedo and rainfall. The simple linear regression 

model related to the relationship between NDVI and 

rainfall also showed the same result. The regression 

model had met all assumptions, and there was a 

relationship between NDVI and rainfall. 

There is a direct dependence of available energy 

on various surface parameters such as albedo and 

NDVI (Oliveira et al., 2018). Albedo is one of the 

radiation balance components, and NDVI strongly 

correlates to evapotranspiration and surface tem-

perature (Artikanur and June, 2019). Rainfall itself has 

an important effect on the energy balance (Abera et 

al., 2020), in which it can affect the dynamics of 

sensible heat flux (H) and latent heat flux (LE) via the 

availability of surface water (June et al., 2018). In 

addition, rainfall also influences soil temperature (Li et 

al., 2019). This is in accordance with the condition that 

decreasing albedo and increasing NDVI will impact 

increasing rainfall. 

CONCLUSIONS 

The albedo in Muaro Jambi and Jambi City in 

January was lowest in forest, followed by plantation, 

cropland, shrubs, and settlement. In contrast, the NDVI 

was highest in forest, followed by plantation, cropland, 

shrubs, and settlement. Land use change from 2013 to 

2017 led to increasing variance of albedo, NDVI, 

sensible and latent heat flux, and rainfall. The 

coefficient of determination between albedo and 

rainfall in 2013 was 0.86, while for NDVI and rainfall 

0.93. Not much different, the coefficient of deter-

mination between albedo and rainfall in 2017 was 0.99, 

while for NDVI and rainfall 0.97. There was a linear 

relationship between NDVI and rainfall, and an 

inversed relationship between albedo and rainfall. 

Among all land cover classes, the settlement had a 

highest variation of rainfall due to high variation of 

surface characteristics (albedo, NDVI, sensible and 

latent heat flux). The settlement also had high albedo 

that leads to increased surface temperature, sensible 

and latent heat flux. Increasing upward latent heat flux 

from the land surface to atmosphere leads to a rainfall 

increase. Rainfall increased with the decrease in albedo 

and increase in latent heat flux and NDVI. The various 

land use change also affects rainfall pattern change. 
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