Potensi Trichoderma sp. Indigenus Gorontalo sebagai Dekomposer Limbah Tanaman Jagung

  • Rida Iswati Fakultas Pertanian, Universitas Negeri Gorontalo. Jl. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554
  • Abdul Latief Abadi Fakultas Pertanian Universitas Brawijaya Malang, Jl. Veteran, Ketawanggede, Malang 65145
  • Luqman Qurata Aini Fakultas Pertanian Universitas Brawijaya Malang, Jl. Veteran, Ketawanggede, Malang 65145
  • Soemarno Soemarno Fakultas Pertanian Universitas Brawijaya Malang, Jl. Veteran, Ketawanggede, Malang 65145
  • Asnawi Asnawi Pusat Riset Hortikultura dan Perkebunan, Organisasi Riset Pertanian dan Pangan, Badan Riset dan Inovasi Nasional, Cibinong Science Center Jl. Raya Jakarta-Bogor, Bogor 16915
  • Siska Irhamnawati Pulogu Fakultas Pertanian, Universitas Negeri Gorontalo. Jl. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554
  • Sofyan Sudirman Rudin Balai Perlindungan Tanaman Pertanian Provinsi Gorontalo. Jl. Prof. Dr. Aloe Saboe, Kabila, Bone Bolango 96128

Abstract

Using decomposers of fungi to increase the composting process is very necessary. The research aims to determine the potential of Trichoderma sp. Gorontalo local isolate as a decomposer of maize stover. The research was carried out from November 2022‒January 2023 at the Biological Agents Laboratory, Agricultural Plant Protection Center, Gorontalo Province Agricultural Department. This research determined the ability of six isolates of Trichoderma, namely TZ11DI1 (T. asperellum), TZ21BN2 (T. breviconvenctum), TZ21BT1 (T. virens), TZ12PO1 (T. ghanence), TZ21DU1 (T. reesei), TZ21LU1 (T. dorothopsis), and control (EM4) to produce cellulase and as a maize stover decomposer. The parameters observed were the clear zone in the isolate growing media as well as the physical and chemical characteristics of the compost produced. The results showed that Trichoderma isolates produced cellulase and potential as a decomposer for maize stover, as indicated by the ability to increase NPK nutrient levels and reduce the C/N ratio of maize stover compost.

 

Keywords: compost, decomposer, maize stover, Trichoderma

Downloads

Download data is not yet available.

References

Afrâa R, Sushant S, Ali F. 2016. Assessment of the composting process and compost’s utilization. Vegetos. An Int. J. Plant Res. 29, 2. https://doi.org/10.5958/2229- 4473.2016.00011.2.
Amira DR, Roshanida AR, Rosli MI, Zahrah SF, Anuar MJ, Adha CMN. Bioconversation of empty fruit bunch (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. Afr. J. Biotechnol 10 (8): 18775-18780.
Budiastuti MTS, Purnomo D, Pujiasmanto B, Setyaningrum D. 2023. Response of maize yield and nutrient uptake to indigenous organic fertilizer from corn cobs. Agriculture 13, 309. https://doi.org/10.3390/agriculture13020309
Castillo-González, E, De Medina-Salas L, Giraldi-Díaz MR, Sánchez-Noguez C. Vermicomposting: A valorization alternative for corn cob waste. Appl. Sci. 2021, 11, 5692.
Carsolio C, Benhamou N, Haran S, et al. (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65: 929–935.
Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val E, et al. (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol Ecol 92: fiw036
Faesal, Syuryawati. 2018. Efektivitas kompos limbah jagung menggunakan bakteri dan cendawan pada tanaman jagung. Pangan 27(2); 117-128.
Gaind S, Nain L. 2007. Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants. Biodegradation 18: 495-503.
Halifu S, Deng X, Song X, et al. (2019) Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 10: 758.
Haq I, Shahzadi K, Hameed U, Javed MM, Qadeer MA. 2006. Solid¬state fermentation of cellulases by locally isolated Trichoderma harzianum for the exploitation of agricultural byproducts. Pak. J. Biol. Sci. 9:1779– 1782. doi:10.3923/pjbs.2006.1779.1782.
Hardianita S, Bosas R, Nurani Y (2016) The potential of Tithonia diversifolia green manure for improving soil quality for cauliflower (Brassica oleracea var. Brotrytis L.). J Degrad Min Lands Manag 3: 499–506.
Heny, A. 2015. Isolasi dan uji efektifitas aktivator alam terhadap aktivitas dekomposisi dan kualitas kompos tongkol jagung. http://thesis.umy.ac.id/datapublik/t60218.pdf
Herdiyantoro. 2010. Pengomposan: Mikrobiologi dan Teknik Pengomposan. Laboratorium Biologi dan Bioteknologi Tanah. Jurusan Ilmu Tanah. Fakultas Pertanian Universitas Padjadjaran.
Hsieh CWC, Cannella D, Jørgensen H, et al. (2015) Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnol Biofuels 8: 52
Irfan M, Nadeem M, Syed Q. 2014. One¬factor¬ata¬time (OFAT) optimization of xylanase production from Trichoderma viride¬IR05 in solid¬state fermentation. J. Radiat. Res. Appl. Sci. 7:317–326. doi:10.1016/J.JRRAS.2014.04.004.
Liew JX, Loy ACM, Chin BLF, AlNouss A, Shahbaz M, Al-Ansari T, Govindan R, Chai YH. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew. Energy 2021, 170, 948–963.
Nusaibah SA, Musa H. 2019. A review report on the mechanism of Trichoderma spp. as biological control agent of the Basal Stem Rot (BSR) disease of Elaeis guineensis. IntechOpen 1–12.
Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N., & Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140–157. doi:10.1016/j.jenvman.2016.12.051
Pandey N, Adhikhari M, Bhantana B. 2019. Trichoderma and its prospects in agriculture of Nepal: An overview. Int J Appl Sci Biotechnol 7: 309–316.
Rofi’I M, Susanti A, Zuhria SA. The formulation’s technique using microbes to the speed decomposition of biomass fertilizers. Agaricus 1 (1): 28-36.
Shafawati SN, Siddiquee S, Wong CMVL, Kumar SV. 2014. Lignocellulolytic activities among Trichoderma isolates from lahad datu, sabah and deception island, antarctic, J. Microb. Biochem. Technol. 6 (5): 295–302.
Suyanto A, Irianti ATP. 2015. Efektivitas Trichoderma sp dan mikroorganisme lokal (MOL) sebagai decomposer dalam meningkatkan kualitas pupuk organik alami dari beberapa limbah tanaman pertanian. Jurnal Agrosains 12 (2): 1-7.
Tambichik MA, Mohamad N, Samad AA, Bosro MZ, Iman MA. 2018. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review. In: IOP Conf. Ser. Earth Environ. Sci., volume 140. p. 12134. doi:10.1088/1755¬ 1315/140/1/012134
Thaha AR, Umrah U, Asrul A, Rahim A, Fajra F, Nurzakia N. 2020. The role of local isolates of Trichoderma sp. as a decomposer in the substrate of cacao pod rind (Theobroma cacao L.). AIMS Agriculture and Food 5 (4): 825-834. DOI: 10.3934/agrfood.2020.4.825
Tiwari P, Misra BN, Sangwan NS. 2013. β-glucosidases from the fungus Trichoderma: An efficient cellulase machinery in biotechnological applications. Biomed Res Int 2013: 203735.
Triwahyuni E, Aristiawan Y, Ariani N, Abimanyu H, Anindyawati T. 2018. The evaluation of substrates and Trichoderma sp. isolates for cellulase production. J.Kim.Terap.Indones. 20(1):42–48. URL https://inaj ac.lipi.go.id/index.php/InaJAC/article/view/384/437.
Villamizar-Gallardo RA, Ortíz-Rodriguez OO, Escobar JW (2017) Symbiotic and endophytic fungi as biocontrols against cocoa (Theobroma cacao L.) phytopathogens. Summa Phytopathol 43: 87–93.
Wang L, Li Y, Prasher SO, Yan B, Ou Y, Cui H, Cui Y. 2019. Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios. Bioresource Technology 289 (121745). https://doi.org/10.1016/j.biortech.2019.121745.
Wang H, Zhai L, Geng A. 2020. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J. Biosci. Bioeng. 129(2):242–249. doi:https://doi.org/10.1016/j.jbiosc.2019.08.016
Yunus F, Abidin Z, Xyzquolyna D. 2018. Analisis pendapatan usahatani jagung (Zea mays) pada lahan kerring desa Bakti Kecamatan Pulubala Kaabupaten Gorontalo. Jurnal Agropolitan 5 (1): 28-38.
Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. For agriculture applications. Annals of Agriculture Science 65(2): 168-178. https://doi.org/10.1016/j.aoas.2020.09.003
Zeng R, Yin XY, Ruan T, Hu Q, Hou Y, Zou Z, Huang H, Yang ZH. 2016. A Novel Cellulase Produced by a Newly Isolated Trichoderma virens. Bioengineering 3(2): 13. https://doi.org/10.3390/bioengineering3020013
Zhang X, Zhang Y. 2013. Cellulases: Characterisitcs, sources, production, and aplications. In: Bioprocessing Technologies in Biorefi nery for Sustainable Production of Fuels, Chemicals, and Polymers, John Wiley & Sons, 131–146.
Published
2024-01-04
How to Cite
Rida Iswati, Abdul Latief Abadi, AiniL. Q., SoemarnoS., AsnawiA., PuloguS. I., & RudinS. S. (2024). Potensi Trichoderma sp. Indigenus Gorontalo sebagai Dekomposer Limbah Tanaman Jagung. Jurnal Ilmu Pertanian Indonesia, 29(2), 163-168. https://doi.org/10.18343/jipi.29.2.163