Aktivitas NADP(H) Oksidoreduktase pada Kultur Sel Kina (Cinchona ledgeriana Moens) Terelisitasi

  • Maulidiyah Utami Sekolah Pascasarjana, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16680
  • Diah Ratnadewi Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16680
  • Dyah Iswantini Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16680
  • Trivadila Trivadila Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16680


Cinchona ledgeriana Moens is an industrial plant producing secondary metabolite quinoline alkaloids. To maintain and moreover, to increase the quinoline production especially quinine, in vitro culture system through cell culture could be a potential alternative. If the use of elicitor in cell culture can increase the production of a secondary metabolite, the activity of the enzymes involved in the biosynthetic pathway of the secondary metabolite in question might be increasing. This study aimed to examine the activity of NADPH oxidoreductase in the elicitated cell culture of C. ledgeriana and to evaluate the correlation between the activity of this enzyme and the level of quinine production. The cell cultures of Cinchona were treated with abscisic acid (ABA) or paclobutrazol (PBZ), combined with sucrose, sorbitol, or mannitol in Wood Plant (WP) media, for 7 weeks on a shaker. The quinine concentration was determined using high-performance liquid chromatography (HPLC) and the enzyme activity was measured using fluorometry. The results showed that the highest enzyme activity was found in the P7M cells (PBZ 7 mg/L + mannitol 5.3 g/L + sucrose 20 g/L), followed by the A3S cells (ABA 3 mg/L + sorbitol 5.3 g/L + sucrose 20 g/L). These results correspond to their production level of the quinine alkaloids. The lowest enzyme activity was found in the cultures without elicitor. The increase of NADP(H) enzyme activity in the P7M and A3S treatments were 13.5 and 8.5%, respectively, compared to that in the control cells.

Keywords: elicitation, fluorometry, NADP(H) oxidoreductase, quinoline alkaloid


Download data is not yet available.


Abbasi A, Shekari F, Mustafavi SH. 2015. Effect of paclobutrazol and salicylic acid on antioxidants enzyme activity in drought stress in wheat. Idesia. 33(4): 5–13.

Aerts RJ, de Waal A, Pennings EJ, Verpoorte R. 1991. The distribution of strictosidine-synthase activity and alkaloids in Cinchona plants. Planta. 183(4): 536–541.

Awasthi S, Srivastava A, Singla ML. 2011. Voltammetric determination of citric acid and quinine hydrochloride using polypyrrole-pentacyanonitrosylferrate/platinum electrode. Synthetic Metals. 161: 1707–1712. https://doi.org/ 10.1016/j.synthmet.2011.06.009.

Blom TJM, Kreis W, Van Iren F, Libbenga KR. 1992. A non-invasive method for the routine-estimation of fresh weight in batch suspension cultures. Plant Cell Reports. 11: 146–149.

Bourgaud F, Gravot A, Milesi S, Gontier E. 2001. Review: production of plant secondary metabolites: a historical perspective. Plant Science. 161(5): 839–851.

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254. https://doi: 10.1006/abio.1976.9999.

De Pablos-Martinez C, Porte L, Fraissinet F, Berry A, Séraissol P, Lavit M, Chatelut E, Concordet D, Gandia P. 2016. Quinine unbound concentration is the bestmarker for therapeutic drug monitoring. Therapie. 71(5): 487–489. https://doi.org/10.1016/ j.therap.2016.02.032.

Flieger J, Zelazko AC. 2015. Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample. Food Chemistry. 166: 150–157. https://doi.org/10.1016/j.foodchem.2014. 06.037.

Ghaheri M, Kahrizi D, Bahrami G. 2017. Effect of mannitol on some morphological characteristics of in vitro Stevia rebaudiana Bertoni. Biharean Biologist. 11(2): 94–97.

Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation: Review. Journal of Biochemistry. 444: 11–25. https://doi.org/10.1042/BJ20120245.

Ibrahim MH, Jaafar HZE. 2013. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules. 18: 7957–7976. https://doi.org/10.3390/ molecules18077957.

Isaac JE, Robins RJ, Rhodes MJC. 1987. Cinchonine: NADPH oxidoreductase I and II-novel enzymes in the biosynthesis of quinoline alkaloids in Cinchona ledgeriana. Phytochemistry. 26(2): 393–399. https://doi.org/10.1016/S0031-9422(00)81420-X.

Ivanov I, Georgiev V, Pavlov A. 2013. Elicitation of galanthamine biosynthesis by Leucojum aestivum liquid shoot cultures. Journal of Plant Physiology. 170: 1122–1129. https://doi.org/10.1016/j.jplph. 2013.03.017.

Kondhare KR, Hedden P, Kettlewell PS, Farrell AD, Monaghan JM. 2014. Use of the hormone-biosynthesis inhibitors fluridone and paclobutrazol to determine the effects of altered abscisic acid and gibberellin levels on pre-maturity a-amylase formation in wheat grains. Journal of Cereal Science. 60(1): 210–216. https://doi.org/10.1016/ j.jcs.2014.03.001.

Krishnan JJ, Gangaprasad A, Satheeshkumar K. 2018. Exogenous methyl jasmonate acts as a signal transducer in the enhancement of camptothecin (CPT) production from in vitro cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. F. Industrial Crops and Products. 119: 93–101. https://doi.org/10.1016/j.indcrop.2018.04.007.

Krishnaveni M, Suresh K, Rajasekar M. 2015. Antioxidant and free radical scavenging activity of quinine determined by using different in vitro models. International Journal of Modern Research and Reviews. 3: 569–574.

Melcher K, Zhou XE, Xu HE. 2010. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current Opinion in Structural Biology. 20(6): 722–729. https://doi.org/ 10.1016/j.sbi.2010.09.007.

Mog B, Janani P, Nayak MG, Adiga JD, Meena R. 2019. Manipulation of vegetative growth and improvement of yield potential of chasew (Anacardium occidentale L.) by paclobutrazol. Scientia Horticulturae. 257(17): 108748 https:// doi.org/10.1016/ j.scienta.2019.108748.

Mustafa NR, de Winter W, van Iren F, Verpoorte R. 2011. Initiation, growth and cryopreservation of plant cell suspension cultures. Natural Protocols. 6: 715–742. https://doi.org/10.1038/nprot.2010.144.

Pan Q, Saiman MZ, Verpoorte R, Tang K. 2018. Accumulation of terpenoid indole alkaloids in jasmonic acid elicited Catharanthus roseus plants before and during flowering. Pakistan Journal of Botany. 50(3): 1077–1083.

Pratiwi DR. 2017. Senyawa sekunder dalam jaringan dan suspensi sel kina (Cinchona ledgeriana Moens): analisis anatomi, histokimia, dan kadarnya. [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Rahman MNHA, Shaharuddin NA, Wahab NA, Wahab PEM, Abdullah MO, Abdullah NAP, Parveez GKA, Roberts JA, Ramli Z. 2016. Impact of paclobutrazol on the growth and development of nursery grown clonal oil palm (Elaeis guineensis Jacq.). Journal of Oil Palm Research. 28(4): 404–414.

Ratnadewi D, Satriawan D, Sumaryono. 2013. Enhanced production level of quinine in cell suspension culture of Cinchona ledgeriana Moens by paclobutrazol. Biotropia. 20(1): 10–18. http:// dx.doi.org/10.11598/btb.2013.20.1.291.

Ratnadewi D, Sumaryono. 2010. Quinoline alkaloids in suspension cultures of Cinchona ledgeriana treated with various substances. HAYATI Journal of Biosciences. 17(4): 179–182. https://doi.org/ 10.4308/hjb.17.4.179.

Satriawan D. 2012. Peningkatan kandungan alkaloid kinin dalam suspensi sel kina (Cinchona ledgeriana Moens) dengan perlakuan senyawa kimia. [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Steinitz B. 1999. Sugar alcohols display nonosmotic roles in regulating morphogenesis and metabolisms in plants that do not produce polyols as primary photosynthetic products: review. Journal of Plant Physiology. 155: 1–8.

Wang J, Qian J, Yao L, Lu Y. 2015. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources and Bioprocessing. 2(5): 1–9. https://doi.org/10.1186/s40643-014-0033-5.

Zayed R. 2011. Efficient in vitro elicitation of β-carboline alkaloids in transformed root cultures of Peganum harmala. Bulletin of Faculty of Pharmacy, Cairo University. 49(1): 7–11.

How to Cite
UtamiM., RatnadewiD., IswantiniD., & TrivadilaT. (2020). Aktivitas NADP(H) Oksidoreduktase pada Kultur Sel Kina (Cinchona ledgeriana Moens) Terelisitasi. Jurnal Ilmu Pertanian Indonesia, 25(4), 540-546. https://doi.org/10.18343/jipi.25.4.540