Pengaruh Nanokitosan-Ag/Cu pada Perkembangan Penyakit Antraknosa pada Cabai

  • Deden Dewantara Eris Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Sri Wahyuni Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Soekarno Mismana Putra Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Ciptadi Achmad Yusup Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Agustin Sri Mulyatni Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Siswanto Siswanto Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Jl. Taman Kencana No.1, Bogor 16128
  • Eti Heni Krestini Balai Penelitian Tanaman Sayuran, Jl. Tangkuban Perahu No. 517, Lembang 40391
  • Christina Winarti Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian, Jl. Tentara Pelajar 12 A, Kampus Penelitian Pertanian Cimanggu, Bogor 16122
Keywords: Ag, antracnose, Chili, Cu, nanochitosan

Abstract

Plant disease that often attacks the chili both in pre- and postharvest is fruit rot or commonly called with antracnose. Antracnose is caused by the attack of fungus Colletotrichum capsici. To control it, fungicides which are effective, safe for environmental and human are needed. For that purpose, people develop chitosanbased fungicide. Chitosan has been widely reported has an antimicrobial role for viral, bacterial, and fungal which can cause disease in plants. Further development of chitosan in order to increase antimicrobial activity is by the synthesis of Ag/Cu-Chitosan nanoparticles. Based on tests, it is known that both in the laboratory and greenhouse scale, Ag-ChNPs at a dose of 500 ppm and Cu-ChNPs at a dose of 1000 ppm have an inhibition effect on growth of Colletotrichum capsici by 17.3 and 42.3% meanwhile the treatment of Ag-ChNPs at a dose of 500 ppm and Cu-ChNPs at a dose of 1000 ppm were significantly potential in suppressing the incidence of the diseases on Tanjung, Ciko, and Kencana varieties of chili in greenhouse. Microscopically, the activities of antimicrobial compounds of Ag/Cu-Chitosan nanoparticles cause a damage to the fungal hyphae which is characterized by malformations that lead to the inhibition of hyphae growth. In the petri dish it was shown by the emergence of inhibition zone in the form of clear area around the treated disc paper.

Downloads

Download data is not yet available.

References

Acedo AL Jr, Weinberger K. 2010. Vegetables postharvest: Simpletechniques for increased income and market. AVRDC-The WorldVegetable Center. Taiwan and GTZ-Regional Economic Development Program. Cambodia (KH). Hal. 37.

Ali A, Muhammad MTM, Sijam K & Siddiqui Y. 2010. Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. International Journal of Food Science and Technology. 45(10): 2134-2140. https://doi.org/ 10.1111/j.1365-2621.2010.02389.x

Chatterje S, Chatterje BP, Guha AK. 2014. A study on antifungal activity of water soluble chitosan against Macrophomina paseolina. Internasional Journal of Biological Acromolecules. 67: 452-457. https:// doi.org/10.1016/j.ijbiomac.2014.04.008

Chowdappa P, Gowda S, Chethana CS, Madhura S. 2014. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research. 8(17): 1803-1812. https://doi.org/ 10.5897/AJMR2013.6584

Choudhary RC, RV Kumaraswamy, Kumari S, Ajay P, Raliya R, Biswas P, Saharan V. 2017. Synthesis, Characterization, and Application of Chitosan Nanomaterials Loaded with Zinc and Copper for Plant Growth and Protection. In: Nanotechnology: An Agricultural Paradigm. Singapore (SG): Springer Nature Singapore Pte Ltd. Hal. 227-247. https://doi.org/10.1007/978-981-10-4573-8_10

Diao YZ, Zhang C, Liu F, Wang WZ, Liu L, Cai L, Liu XL. 2017. Colletotrichum species causing anthracnose disease of chili in China. Persoonia: Molecular Phylogeny and Evolution of Fungi. 38: 20-37. https://doi.org/10.3767/003158517X692 788.

El Hadrami A, Adam LR, El Hadrami I, Daayf F. 2010. Review: Chitosan in Plant Protection. Marine Drugs. 8: 968-987. https://doi.org/10.3390/md8040968

Ghoname AA, El-Nemr MA, RAbdel-Mawgoudand AM, El-Tohamy WA. 2010. Enhancementof Sweet Pepper Crop Growth and Productionby Application of Biological, Organic and Nutritional Solutions. Research Journal of Agriculture and Biological Sciences. 6(3): 349-355.

Ghormade V, Deshpande MV, Paknikar KM. 2011 Perspective for nanobiotechnology enabled protection and nutrition of plants. Biotechnology Advances. 29(6): 792-803. https://doi.org/ 10.1016/j.biotechadv.2011.06.007

Hadrami AE, Adam LR, Hadrami IE, Daayf F. 2010. Chitosan in plant protection. Marine Drugs. 2010(8): 968-987. https://doi.org/10.3390/md8040968

Hamdayanty, Yunita R, Amin NN, Damayanti TA. 2012. Pemanfaatan chitosan untuk mengendalikan antraknosa pada pepaya (Colletotrichum gloeosporioides) dan meningkatkan daya simpan buah. Jurnal Fitopatologi Indonesia. 8(4): 97-102. https:// doi.org/10.14692/jfi.8.4.97

Harahap TFH, Lubis L, Hasanuddin. 2013. Efek temperatur terhadap virulensi jamur Colletotrichum gloesporioides Penz. Sacc. penyebab penyakit Antraknosa pada tanaman kakao (Theobroma cacao L.). Jurnal Online Agroekoteknologi. 2(1): 411-420.

Harpenas A, Dermawan R. 2010. Budi Daya Cabai Unggul. Jakarta (ID): Kanisius.

Hartati S, Natawigena, WD, Istifadah N, Dewi SR. 2018. Penambahan Gula untuk Meningkatkan Pertumbuhan dan Antagonisme Khamir Rhodotorula minuta terhadap Colletotrichum acutatum Penyebab Antraknosa Cabai secara In-vitro. Agrikultura. 29(2): 89-99.

Hernandez-Lauzardo AN, Miguel GV, Maria GG. 2011. Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research. 5(25): 4243-4247. https://doi.org/10.5897/AJMR11.104

Kalantari S, Rouhani M, Samih M. 2012. Insecticidal effect of silica and silver nanoparticles on cowpea seed beetle, Callosobruchus maculatus F. (Col: Bruchidae). Journal of Entomological Research. 4(4): 297-305.

Khairani HS, Sinaga MS, Mutaqin KH. 2017. Mekanisme Pengendalian Penyakit Busuk Batang Jeruk oleh Khamir, Kitosan, Cendawan Mikoriza Arbuskular, dan Bakteri Simbiotiknya. Jurnal Fitopatologi Indonesia. 13(1): 17-25. https:// doi.org/10.14692/jfi.13.1.17

Muzzarelli RAA. 2010. Chitins and chitosans as immunoadjuvants and nonallergenic drug carriers. Marine Drugs. 8: 292-312.

Oo MM, Oh SK. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean Journal of Agricultural Science. 43(2): 153-162. https://doi.org/10.7744/kjoas.2016 0018

Prathibha VH, Rao AM, Ramesh R, Nanda C. 2013. Estimation of fruit quality parameters in anthracnose infected chilli fruits. International Journal of Agriculture and Food Science Technology. 4(2): 57-60.

Rismana E, Nizar N, Bunga O, Kusumaningrum S, Marhamah M. 2014. Pengujian Aktivitas Antiacne Nanopartikel Kitosan Ekstrak Kulit Buah Manggis (Garcinia mangostana). Media Penelitian dan Pengembangan Kesehatan. 24(1): 19-27. https:// doi.org/10.22435/mpk.v24i1.3483.19-27

Saharan Vinod, G Sharma, M Yadav, MK Choudhary, SS Sharma, Ajay Pal, R Raliya P Biswas. 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules. 75: 346-353. https://doi.org/ 10.1016/j.ijbiomac.2015.01.027

Sundari S, Singh A, Yadava P. 2016. Review of current research advances in microbial and phyto-biopesticides. International Journal of Biotechnology Biomedical Sciences. 2(1): 73-77.

Sutedjo M, Mulyani, Kartasapoetra AG, Sastroatmodjo RDS. 1991. Mikrobiologi Tanah. Jakarta (ID): PT Rineka Cipta.

Suwor P, Thummabenjapone P, Sanitchon J, Kumar S, Techawongstien S. 2015. Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen (Colletotrichum spp.). European Journal of Plant Pathology. 143(4): 725-736. https://doi.org/10.1007/s10658-015-0723-7

Tiyaboonchai W. 2013. Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal. 11(3): 51-66.

Trisnawati E, Andesti D, Saleh A. 2013. Pembuatan kitosan dari limbah cangkang kepiting sebagai bahan pengawet buah dukudengan variasi lama pengawetan. Jurnal Teknik Kimia. 2(19): 17-26.

Younes I, Sellimi S, Rinaudo M, Jellouli K, Moncef N. 2014. Influence of acetilation degree and molecular weight of homogenous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology. 185: 57-63. https://doi.org /10.1016/j.ijfoodmicro.2014.04.029

Zadoks JC and Schein RD. 1979. Epidemiology and Plant Disease Management. New York (ID): Oxford University Press.

Zain NM, Stapley AGF, Shama G. 2014. Green synthesis of silver and copper nanoparticles using Ascorbic acid and Chitosan for antimicrobial applications. Carbohydrate polymers. 112: 195-202. https://doi.org/10.1016/j.carbpol.2014. 05.081

Published
2019-07-31
How to Cite
ErisD. D., WahyuniS., PutraS. M., YusupC. A., MulyatniA. S., SiswantoS., KrestiniE. H., & WinartiC. (2019). Pengaruh Nanokitosan-Ag/Cu pada Perkembangan Penyakit Antraknosa pada Cabai. Jurnal Ilmu Pertanian Indonesia, 24(3), 201-208. https://doi.org/10.18343/jipi.24.3.201