Main Article Content

Abstract

Abstract
Artificial lighting given in plant-factory planting system is inseparable from uniformity problem. Spatial variation in the catch of light (radiation) will occur due to the position of the plant against the lamp. The purpose of this research was; a) to determine the relationship between biomass growth and the intensity of artificial irradiation in plant-factory systems, and b) to apply the mechanical model of plant growth based
on radiation interception and temperature. Six boxes containing red spinach plants were placed on plant factory system in the form of two racks (each rack is placed 3 boxes). In each box, intercepted light was measured and then converted to radiation value. The air temperature in plant-factory space was measured during growth to harvest. Observations showed that there was a difference in light interception in plantfactory
growing spaces that caused variations in plant biomass growth. Mathematical models were used to predict the relationship between light interception and biomass growth. This research concludes that the variation of light occurring in plant-factory planting cannot be ignored, as this leads to markedly different plant-end biomass differences. Modeling can be applied to design optimal lighting to improve plant biomass.


Abstrak
Pencahayaan buatan yang diberikan dalam sistem penanaman dalam ruang (plant factory) tidak terlepas dari masalah keseragaman. Variasi spasial dalam tangkapan cahaya (radiasi) akan terjadi karena posisi tanaman terhadap lampu. Tujuan dari penelitian ini adalah; a) untuk mengetahui hubungan antara pertumbuhan biomassa dan intensitas penyinaran buatan dalam sistem plant-factory, dan b) menerapkan
model mekanik pertumbuhan tanaman berdasarkan intersepsi radiasi dan temperatur. Enam buah kotak berisi tanaman bayam merah diletakkan pada sistem plant factory berupa dua buah rak (masing-masing rak ditempatkan 3 buah kotak). Pada masing-masing kotak diukur cahaya terintersepsi yang kemudian
dikonversi menjadi nilai radiasi. Suhu udara dalam ruang plant-factory diukur selama pertumbuhan hingga panen. Pengamatan menunjukkan bahwa dalam ruang tumbuh plant-factory terdapat perbedaan intersepsi cahaya yang menyebabkan adanya variasi pada pertumbuhan biomassa tanaman. Model matematika
digunakan untuk memprediksi hubungan antara intersepsi cahaya dan pertumbuhan biomassa. Kesimpulan menunjukkan bahwa variasi cahaya yang terjadi dalam penanaman sistem plant-factory tidak dapat diabaikan, karena menyebabkan terjadinya perbedaan biomassa akhir tanaman yang cukup tajam. Permodelan dapat diterapkan untuk merancang pemberian cahaya yang optimal untuk meningkatkan
biomassa tanaman.

Keywords

biomass growth model heat unit intercepted radiation plant-factory

Article Details

Author Biographies

Ardiansyah Ardiansyah, Universitas Jenderal Soedirman

Laboratorium. Teknik Manajemen dan Kontrol Bio-Lingkungan,
Departemen Teknik Pertanian, Universitas Jenderal Soedirman

Eni Sumarni Sumarni, Universitas Jenderal Soedirman

Laboratorium. Teknik Manajemen dan Kontrol Bio-Lingkungan,
Departemen Teknik Pertanian, Universitas Jenderal Soedirman

Sidharta Sahirman, Universitas Jenderal Soedirman

Laboratorium. Teknik Manajemen dan Kontrol Bio-Lingkungan,
Departemen Teknik Pertanian, Universitas Jenderal Soedirman

References

  1. Dewanto, R.A. 2015. Model simulasi tanaman padi Varietas Ciherang, Inpari 10, dan Inpari 13. (Skripsi) Departemen Geofisika dan Meteorologi
  2. Fakultas MIPA. IPB. Bogor. http://repository.ipb. ac.id/handle/123456789/75476.
  3. Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Acta Horticulturae, 956(October):37–49. https://doi.org/10.17660/
  4. ActaHortic.2012.956.2.
  5. Handoko, I. 1994. Dasar penyusunan dan aplikasi model simulasi komputer untuk oertanian. Jurusan Geofisika dan Meteorologi-IPB.
  6. Margiwiyatno, A., dan E. Sumarni. 2011. Modifikasi iklim mikro pada bawang merah hidroponik dalam rangka memperoleh bibit bermutu. Jurnal
  7. Keteknikan Pertanian Vol.25(1):43-47
  8. Marques, B.S., A.P.P. Silva, R.S.O. Lima, E.C.R. Machado, M.F. Gonçalves, and S.J.P. Carvalho.2014. Growth and development of sourgrass
  9. based on days or thermal units. Planta Daninha Vol.32(3):483–90. https://doi.org/10.1590/ S0100-83582014000300003.
  10. Maruyama, A., T. Kuwagata, K. Ohba, and T. Maki. 2007. Dependence of solar radiation transport in rice canopies on developmental stage.
  11. Jarq-Japan Agricultural Research Quarterly Vol.41(1):39–45.
  12. McAvoy, R.J., H.W. Janes, and G.A. Giacomelli. 1988. Development of a plant factory model: i. the organizational and operational model Ii. a plant growth model: the single truss tomato crop. Proceeding of International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation 248:85–94. http://www.actahort.org/ books/248/248_7.htm.
  13. Murakami, T. 1973. Paddy rice ripening and temperature. Japan Agricultural Research Quarterly. Vol.7(1):1.
  14. Parthasarathi, T., G. Velu, and P. Jeyakumar. 2013. Impact of crop heat units on growth and developmental physiology of future crop production: a review. Journal of Crop Science and Technology. Vol.2(1):2319–3395.
  15. Peart, R.M., and W.D. Shoup. 1997. Agricultural Systems Modeling and Simulation. CRC Press.
  16. Pilau, F.G. and L.R. Angelocci. 2015. Leaf area and solar radiation interception by orange tree top. Bragantia. Vol.74(4):476–82. https://doi.
  17. org/10.1590/1678-4499.0130.
  18. Schulze, E.D., O.L. Lange, L. Kappen, U. Buschbom, and M. Evenari. 1973. Stomatal responses to changes in temperature at increasing water
  19. stress. Planta Vol.110(1):29–42. https://doi. org/10.1007/BF00386920.
  20. Sihombing, D. 2006. Model simulasi pertumbuhan dan perkembangan tanaman kentang (Solanum tuberosum. L). (Skripsi) Departemen Geofisika
  21. dan Meteorologi Fakultas MIPA. IPB. Bogor. http://repository.ipb.ac.id/handle/123456789/9338.
  22. Solahudin, M. dan R. Nurista. 2009. Pengembangan sistem pemantauan dan peringatan dini parameter lingkungan mikro dalam rumah kaca
  23. berdasarkan pendekatan logika fuzzy berbasis teknologi Short Message Services (SMS). Jurnal Keteknikan Pertanian Vol. 23(2):99-104
  24. Stålfelt, M.G. 1962. The effect of temperature on opening of the stomatal cells. Physiologia Plantarum Vol.15(4):772–79. https://doi.
  25. org/10.1111/j.1399-3054.1962.tb08126.x.
  26. Stanghellini, C., and T.D. Jong. 1995. A model of humidity and its applications in a greenhouse. Agricultural and Forest Meteorology.
  27. Vol.76(2):129–48. https://doi.org/10.1016/0168-1923(95)02220-R.
  28. Sumarni, E., B.I. Setiawan dan H. Suhardiyanto. 2007. Analisis kesalahan perhitungan laju aliran udara pada pendinginan rumah tanaman
  29. dengan sistem pengkabutan. Jurnal Keteknikan Pertanian Vol.1(1):99-104
  30. Urban, J., M.W. Ingwers, M.A. McGuire, and R.O. Teskey. 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis
  31. from stomatal conductance in Pinus Taeda and Populus Deltoides X Nigra. Journal of Experimental Botany Vol.68(7): 1757–67. https:// doi.org/10.1093/jxb/erx052.
  32. Watanabe, H. 2011. Light-controlled plant cultivation system in Japan - development of a vegetable factory using leds as a light source for plants.
  33. Acta Horticulturae, No. 907(September):37–44.
  34. https://doi.org/10.17660/ActaHortic.2011.907.2. Yorio, N.C., G.D. Goins, H. R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish,
  35. and lettuce growth under red light-emitting diodes (Leds) with blue light supplementation. HortScience. Vol.36 (2):380–83.
  36. Yuliawan, T., and I. Handoko. 2016. The effect of temperature rise to rice crop yield in Indonesia uses Shierary Rice Model with Geographical Information System (GIS) Feature. Procedia Environmental Sciences Vol.(33):214–220.